scholarly journals Characterization and genomic analysis of the first Oceanospirillum phage, vB_OliS_GJ44, representing a novel siphoviral cluster

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenjing Zhang ◽  
Yantao Liang ◽  
Kaiyang Zheng ◽  
Chengxiang Gu ◽  
Yundan Liu ◽  
...  

Abstract Background Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown. Results Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans. Conclusions These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage–host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yundan Liu ◽  
Kaiyang Zheng ◽  
Baohong Liu ◽  
Yantao Liang ◽  
Siyuan You ◽  
...  

Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from −20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.


Author(s):  
Chao Wang ◽  
Min Shi ◽  
Lei Zhang ◽  
Jun Ji ◽  
Ruyan Xie ◽  
...  

Abstract Objective To investigate the molecular characteristics in tumor immune microenvironment that affect long-term survival of patients with pancreatic adenocarcinoma (PAAD). Methods The tumor related genetic features of a female PAAD patient (over 13-year survival) who suffered from multiple recurrences and metastases, and six operations over one decade were investigated deeply. Genomic features and immune microenvironment signatures of her primary lesion as well as six metastatic tumors at different time-points were characterized. Results High-frequency clonal neoantigenic mutations identified in these specimens revealed the significant associations between clonal neoantigens with her prognosis after each surgery. Meanwhile, the TCGA and ICGC databases were employed to analyse the function of KRAS G12V in pancreatic cancer. Conclusions The genomic analysis of clonal neoantigens combined with tumor immune microenvironment could promote the understandings of personalized prognostic evaluation and the stratification of resected PAAD individuals with better outcome.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Jinjin Chen ◽  
Yilan Liu ◽  
Patrick Diep ◽  
Radhakrishnan Mahadevan

Acidithiobacillus ferridurans JAGS is a newly isolated acidophile from an acid mine drainage (AMD). The genome of isolate JAGS was sequenced and compared with eight other published genomes of Acidithiobacillus. The pairwise mutation distance (Mash) and average nucleotide identity (ANI) revealed that isolate JAGS had a close evolutionary relationship with A. ferridurans JCM18981, but whole-genome alignment showed that it had higher similarity in genomic structure with A. ferrooxidans species. Pan-genome analysis revealed that nine genomes were comprised of 4601 protein coding sequences, of which 43% were core genes (1982) and 23% were unique genes (1064). A. ferridurans species had more unique genes (205–246) than A. ferrooxidans species (21–234). Functional gene categorizations showed that A. ferridurans strains had a higher portion of genes involved in energy production and conversion while A. ferrooxidans had more for inorganic ion transport and metabolism. A high abundance of kdp, mer and ars genes, as well as mobile genetic elements, was found in isolate JAGS, which might contribute to its resistance to harsh environments. These findings expand our understanding of the evolutionary adaptation of Acidithiobacillus and indicate that A. ferridurans JAGS is a promising candidate for biomining and AMD biotreatment applications.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Perng-Kuang Chang

Abstract Objective The use of genome sequences from strains authenticated to correct species level is a prerequisite for confidently exploring the evolutionary relationship among related species. Aspergillus strains erroneously curated as Aspergillus oryzae and Aspergillus fumigatus have been noticed in the National Center for Biotechnology Information (NCBI) genome database. Aspergillus parasiticus is one of several aspergilli that produce aflatoxin, the most potent carcinogenic mycotoxin known up to now. To ensure that valid conclusions are drawn by researchers from their genomics-related studies, molecular analyses were carried out to authenticate identities of A. parasiticus strains in the NCBI genome database. Results Two of the nine supposedly A. parasiticus strains, E1365 and NRRL2999, were found to be misidentified. They turned out to be Aspergillus flavus based on genome-wide single nucleotide polymorphisms (SNPs) and genetic features associated with production of aflatoxin and cyclopiazonic acid. NRRL2999 lacked the additional partial aflatoxin gene cluster known to be present in its equivalent strain, designated as SU-1, and shared a very low total SNPs count specifically with A. flavus NRRL3357 but not with other A. flavus isolates. Therefore, the mislabeled NRRL2999 strain actually is a clonal strain of A. flavus NRRL3357, whose genome was first sequenced in 2005.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dan Edward Veloso Villamor ◽  
Karen E Keller ◽  
Robert Martin ◽  
Ioannis Emmanouil Tzanetakis

A comprehensive study comparing virus detection between high throughput sequencing (HTS) and standard protocols in 30 berry selections (12 Fragaria, 10 Vaccinium and 8 Rubus) with known virus profiles was completed. The study examined temporal detection of viruses at four sampling times encompassing two growing seasons. Within the standard protocols, RT-PCR proved better than biological indexing. Detection of known viruses by HTS and RT-PCR nearly mirrored each other. HTS provided superior detection compared to RT-PCR on a wide spectrum of virus variants and discovery of novel viruses. More importantly, in most cases where the two protocols showed parallel virus detection, 11 viruses in 16 berry selections were not consistently detected by both methods at all sampling points. Based on these data we propose a four sampling times/two-year testing requirement for berry and potentially other crops to ensure that no virus remains undetected independent of titer, distribution or other virus/virus or virus/host interactions.


Author(s):  
Ling Luo ◽  
Xinglong Yu ◽  
Xiang Qu ◽  
Fei Zhao ◽  
Yan Ding ◽  
...  

A goose hemorrhagic polyomavirus (GHPV) outbreak occurred in a Goose Farm in Hunan, China, between January and July 2021. Approximately 1,500 breeding goose died, and hatching rates dropped from the previous 85% to about 50% in this outbreak. GHPV HUN-01, isolated from the liver of infected Landes geese, shared a close evolutionary relationship with the Toulouse Goose 2000 and 14234 strain, isolated from geese in France and Hungary. The isolation of GHPV from the livers of dead embryos also demonstrates that the virus can be transmitted vertically. In conclusion, clinical and laboratory diagnostics of the diseased geese in this outbreak were consistent with GHPV being the causative agent. We learned that this is the first time that GHPV has been isolated from geese in mainland China.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tahnee Manning ◽  
Arjun Venkatesh Thilagaraj ◽  
Dmitri Mouradov ◽  
Richard Piola ◽  
Clare Grandison ◽  
...  

Abstract Background Dinoflagellates are a ubiquitous and ecologically important component of marine phytoplankton communities, with particularly notable species including those associated with harmful algal blooms (HABs) and those that bioluminesce. High-throughput sequencing offers a novel approach compared to traditional microscopy for determining species assemblages and distributions of dinoflagellates, which are poorly known especially in Australian waters. Results We assessed the composition of dinoflagellate assemblages in two Australian locations: coastal temperate Port Phillip Bay and offshore tropical waters of Davies Reef (Great Barrier Reef). These locations differ in certain environmental parameters reflecting latitude as well as possible anthropogenic influences. Molecular taxonomic assessment revealed more species than traditional microscopy, and it showed statistically significant differences in dinoflagellate assemblages between locations. Bioluminescent species and known associates of HABs were present at both sites. Dinoflagellates in both areas were mainly represented by the order Gymnodiniales (66%—82% of total sequence reads). In the warm waters of Davies Reef, Gymnodiniales were equally represented by the two superclades, Gymnodiniales sensu stricto (33%) and Gyrodinium (34%). In contrast, in cooler waters of Port Phillip Bay, Gymnodiniales was mainly represented by Gyrodinium (82%). In both locations, bioluminescent dinoflagellates represented up to 0.24% of the total sequence reads, with Protoperidinium the most abundant genus. HAB-related species, mainly represented by Gyrodinium, were more abundant in Port Phillip Bay (up to 47%) than at Davies Reef (28%), potentially reflecting anthropogenic influence from highly populated and industrial areas surrounding the bay. The entire assemblage of dinoflagellates, as well as the subsets of HAB and bioluminescent species, were strongly correlated with water quality parameters (R2 = 0.56–0.92). Significant predictors differed between the subsets: HAB assemblages were explained by salinity, temperature, dissolved oxygen, and total dissolved solids; whereas, bioluminescent assemblages were explained only by salinity and dissolved oxygen, and had greater variability. Conclusion High-throughput sequencing and genotyping revealed greater diversity of dinoflagellate assemblages than previously known in both subtropical and temperate Australian waters. Significant correlations of assemblage structure with environmental variables suggest the potential for explaining the distribution and composition of both HAB species and bioluminescent species.


2010 ◽  
Vol 10 (6) ◽  
pp. 746-754 ◽  
Author(s):  
Mustafizur Rahman ◽  
Jelle Matthijnssens ◽  
Farjana Saiada ◽  
Zahid Hassan ◽  
Elisabeth Heylen ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1864 ◽  
Author(s):  
Holly Tovey ◽  
Maggie Chon U. Cheang

The concept of precision medicine has been around for many years and recent advances in high-throughput sequencing techniques are enabling this to become reality. Within the field of breast cancer, a number of signatures have been developed to molecularly sub-classify tumours. Notable examples recently approved by National Institute for Health and Care Excellence in the UK to guide treatment decisions for oestrogen receptors (ER)+ human epidermal growth factor receptor 2 (HER2)- patients include Prosigna® test, EndoPredict®, and Oncotype DX®. However, a population of still unmet need are those with triple negative breast cancer (TNBC). Accounting for 15–20% of patients, this population has comparatively poor prognosis and as yet no targeted treatment options. Studies have shown that some patients with TNBC respond favourably to DNA damaging drugs (carboplatin) or agents which inhibit DNA damage response (poly ADP ribose polymerase (PARP) inhibitors). Known to be a heterogeneous population, there is a need to identify further TNBC patients who may benefit from these treatments. A number of signatures have been identified based on association with treatment response or specific genetic features/pathways however many of these were not restricted to TNBC patients and as of yet are not common practice in the clinic.


2019 ◽  
Vol 75 (2) ◽  
pp. 296-299 ◽  
Author(s):  
Mark van der Linden ◽  
Rafael Mamede ◽  
Natascha Levina ◽  
Peter Helwig ◽  
Pedro Vila-Cerqueira ◽  
...  

Abstract Objectives Streptococcus agalactiae [group B streptococci (GBS)] have been considered uniformly susceptible to penicillin. However, increasing reports from Asia and North America are documenting penicillin-non-susceptible GBS (PRGBS) with mutations in pbp genes. Here we report, to the best of our knowledge, the first two PRGBS isolates recovered in Europe (AC-13238-1 and AC-13238-2), isolated from the same patient. Methods Two different colony morphologies of GBS were noted from a surgical abscess drainage sample. Both were serotyped and antimicrobial susceptibility testing was performed by different methodologies. High-throughput sequencing was done to compare the isolates at the genomic level, to identify their capsular type and ST, to evaluate mutations in the pbp genes and to compare the isolates with the genomes of other PRGBS isolates sharing the same serotype and ST. Results Isolates AC-13238-1 and AC-13238-2 presented MICs above the EUCAST and CLSI breakpoints for penicillin susceptibility. Both shared the capsular type Ia operon and ST23. Genomic analysis uncovered differences between the two isolates in seven genes, including altered pbp genes. Deduced amino acid sequences revealed critical substitutions in PBP2X in both isolates. Comparison with serotype Ia clonal complex 23 PRGBS from the USA reinforced the similarity between AC-13238-1 and AC-13238-2, and their divergence from the US strains. Conclusions Our results support the in-host evolution of β-lactam-resistant GBS, with two PRGBS variants being isolated from one patient.


Sign in / Sign up

Export Citation Format

Share Document