scholarly journals Limosilactobacillus fermentum MG7011: An Amylase and Phytase Producing Starter for the Preparation of Rice-Based Probiotic Beverages

2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Mi Jo ◽  
Ga Yun Kim ◽  
Seul-Ah Kim ◽  
Seong Won Cheon ◽  
Chang-Ho Kang ◽  
...  

The goal of this study was to develop a starter strain of Limosilactobacillus fermentum which is beneficial for human health and suitable for rice fermentation. To achieve the goal, the characteristics of 25 strains of L. fermentum were compared in terms of health promoting potentials and rice fermenting abilities. L. fermentum MG7011 was selected as a superior strain to meet the required properties. First, as probiotic traits, the strain had tolerance to gastrointestinal conditions and ability to adhere to Caco-2 and HT-29 cells. The strain showed the antioxidative activity, anti-inflammatory activity, and a protective effect on the epithelial barrier. Next, as starter traits for rice fermentation, MG7011 exhibited proper fermentation profiles in rice solution, such as fast growth rate, pH and metabolite changes, amylase and phytase activities, and optimal viscosity changes for beverage. In conclusion, L. fermentum MG7011 has excellent probiotic activities and proper starter traits in rice, thereby it can be used as a suitable probiotic starter for rice fermentation.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1306
Author(s):  
Marcin Dziedziński ◽  
Joanna Kobus-Cisowska ◽  
Barbara Stachowiak

The pine (Pinus L.) is the largest and most heteromorphic plant genus of the pine family (Pinaceae Lindl.), which grows almost exclusively in the northern hemisphere. The demand for plant-based remedies, supplements and functional food is growing worldwide. Although pine-based products are widely available in many parts of the world, they are almost absent as food ingredients. The literature shows the beneficial effects of pine preparations on human health. Despite the wide geographical distribution of pine trees in the natural environment, there are very few data in the literature on the widespread use of pine in food technology. This study aims to present, characterise and evaluate the content of phytochemicals in pine trees, including shoots, bark and conifer needles, as well as to summarise the available data on their health-promoting and functional properties, and the potential of their use in food and the pharmaceutical industry to support health. Various species of pine tree contain different compositions of bioactive compounds. Regardless of the solvent, method, pine species and plant part used, all pine extracts contain a high number of polyphenols. Pine tree extracts exhibit several described biological activities that may be beneficial to human health. The available examples of the application of pine elements in food are promising. The reuse of residual pine elements is still limited compared to its potential. In this case, it is necessary to conduct more research to find and develop new products and applications of pine residues and by-products.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 672
Author(s):  
Panagiotis Kandylis

Consumer interest in the consumption of health promoting foods is growing worldwide due to the realization of the link between diet and human health [...]


2014 ◽  
Vol 30 (1) ◽  
pp. 1-13 ◽  
Author(s):  
M. Sahraei

Continuous genetic selection and improvement in nutrition have led to a very fast growth rate in modern strains of broiler chickens. Metabolic disorders such as ascits, sudden death syndrome and leg problems are related to a rapid early growth rate in poultry, especially in broilers, and their incidence can be decreased by slowing early growth. The use of management tools to reduce metabolic disorders that rely primarily on decreasing feed consumption, The feed restriction programs is on of the main techniques in growth curve manipulation for increasing production efficiency in broiler chicken in alleviate the incidence of some metabolic disorders and can be used to reduction the unfavorable effects of fast growth rate in broiler chicken production industry, and could be profitable in broiler chickens production efficiency. This article implicated on new findings in about different feed restriction programs effects on these problems in broiler chickens.


Author(s):  
L. A. Chudinova ◽  
◽  
D. R. Yusupov ◽  

We studied the growth rate of rye seedlings, as well as the dynamics of the content of soluble proteins and proline in the shoots during their adaptation to sharp (300 mM NaCl once, exposure time 9 days) and gradual (100 mM NaCl, then 100 mM NaCl after 2 days to the final concentration of 400 mM) salinity with sodium chloride in the presence or absence of thermal hardening (+40°C, 3 h). The established dy-namics of the content of proline and soluble proteins in the shoots suggests that the formation of re-sistance to salinity is determined by the high constitutive level of proline, as well as the stress-inducible synthesis of proline and water-soluble proteins. Thermal pretreatment of the seedlings stimulated their constitutive stability to a greater extent. The detected metabolic changes are obviously related to one of the possible mechanisms of the protective effect of thermal hardening on subsequent salinization.


2021 ◽  
Vol 4 ◽  
Author(s):  
Stephan van Vliet ◽  
Frederick D. Provenza ◽  
Scott L. Kronberg

While commission reports and nutritional guidelines raise concerns about the effects of consuming red meat on human health, the impacts of how livestock are raised and finished on consumer health are generally ignored. Meat and milk, irrespective of rearing practices, provide many essential nutrients including bioavailable protein, zinc, iron, selenium, calcium, and/or B12. Emerging data indicate that when livestock are eating a diverse array of plants on pasture, additional health-promoting phytonutrients—terpenoids, phenols, carotenoids, and anti-oxidants—become concentrated in their meat and milk. Several phytochemicals found in grass-fed meat and milk are in quantities comparable to those found in plant foods known to have anti-inflammatory, anti-carcinogenic, and cardioprotective effects. As meat and milk are often not considered as sources of phytochemicals, their presence has remained largely underappreciated in discussions of nutritional differences between feedlot-fed (grain-fed) and pasture-finished (grass-fed) meat and dairy, which have predominantly centered around the ω-3 fatty acids and conjugated linoleic acid. Grazing livestock on plant-species diverse pastures concentrates a wider variety and higher amounts of phytochemicals in meat and milk compared to grazing monoculture pastures, while phytochemicals are further reduced or absent in meat and milk of grain-fed animals. The co-evolution of plants and herbivores has led to plants/crops being more productive when grazed in accordance with agroecological principles. The increased phytochemical richness of productive vegetation has potential to improve the health of animals and upscale these nutrients to also benefit human health. Several studies have found increased anti-oxidant activity in meat and milk of grass-fed vs. grain-fed animals. Only a handful of studies have investigated the effects of grass-fed meat and dairy consumption on human health and show potential for anti-inflammatory effects and improved lipoprotein profiles. However, current knowledge does not allow for direct linking of livestock production practices to human health. Future research should systematically assess linkages between the phytochemical richness of livestock diets, the nutrient density of animal foods, and subsequent effects on human metabolic health. This is important given current societal concerns about red meat consumption and human health. Addressing this research gap will require greater collaborative efforts from the fields of agriculture and medicine.


2020 ◽  
Vol 10 (10) ◽  
pp. 3765-3773
Author(s):  
Jian Yu ◽  
Pengju Zhao ◽  
Xianrui Zheng ◽  
Lei Zhou ◽  
Chuduan Wang ◽  
...  

With the development of high-throughput genotyping techniques, selection signatures in the genome of domestic pigs have been extensively interrogated in the last decade. The Duroc, a major commercial pig breed famous for its fast growth rate and high lean ratio, has not been extensively studied focusing on footprints of intensively artificial selection in their genomes by a lot of re-sequencing data. The goal of this study was to investigate genomic regions under artificial selection and their contribution to the unique phenotypic traits of the Duroc using whole-genome resequencing data from 97 pigs. Three complementary methods (di, CLR, and iHH12) were implemented for selection signature detection. In Total, 464 significant candidate regions were identified, which covered 46.4 Mb of the pig genome. Within the identified regions, 709 genes were annotated, including 600 candidate protein-coding genes (486 functionally annotated genes) and 109 lncRNA genes. Genes undergoing selective pressure were significantly enriched in the insulin resistance signaling pathway, which may partly explain the difference between the Duroc and other breeds in terms of growth rate. The selection signatures identified in the Duroc population demonstrated positive pressures on a set of important genes with potential functions that are involved in many biological processes. The results provide new insights into the genetic mechanisms of fast growth rate and high lean mass, and further facilitate follow-up studies on functional genes that contribute to the Duroc’s excellent phenotypic traits.


Sign in / Sign up

Export Citation Format

Share Document