scholarly journals Bacillus subtilis natto Derivatives Inhibit Enterococcal Biofilm Formation via Restructuring of the Cell Envelope

2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Chieh Lin ◽  
Chun-Yi Wu ◽  
Hung-Tse Huang ◽  
Mei-Kuang Lu ◽  
Wei-Shou Hu ◽  
...  

Enterococcus faecalis is considered a leading cause of hospital-acquired infections. Treatment of these infections has become a major challenge for clinicians because some E. faecalis strains are resistant to multiple clinically used antibiotics. Moreover, the presence of E. faecalis biofilms can make infections with E. faecalis more difficult to eradicate with current antibiotic therapies. Thus, our aim in this study was to investigate the effects of probiotic derivatives against E. faecalis biofilm formation. Bacillus subtilis natto is a probiotic strain isolated from Japanese fermented soybean foods, and its culture fluid potently inhibited adherence to Caco-2 cell monolayers, aggregation, and biofilm production without inhibiting the growth of E. faecalis. An apparent decrease in the thickness of E. faecalis biofilms was observed through confocal laser scanning microscopy. In addition, exopolysaccharide synthesis in E. faecalis biofilms was reduced by B. subtilis natto culture fluid treatment. Carbohydrate composition analysis also showed that carbohydrates in the E. faecalis cell envelope were restructured. Furthermore, transcriptome sequencing revealed that the culture fluid of B. subtilis natto downregulated the transcription of genes involved in the WalK/WalR two-component system, peptidoglycan biosynthesis and membrane glycolipid biosynthesis, which are all crucial for E. faecalis cell envelope synthesis and biofilm formation. Collectively, our work shows that some derivatives present in the culture fluid of B. subtilis natto may be useful for controlling E. faecalis biofilms.

2017 ◽  
Vol 63 (7) ◽  
pp. 608-620 ◽  
Author(s):  
Siyuan Chang ◽  
Xiaodong Chen ◽  
Shuo Jiang ◽  
Jinchun Chen ◽  
Lin Shi

Biofilm is a biological complex caused by bacteria attachment to the substrates and their subsequent reproduction and secretion. This phenomenon reduces heat transfer efficiency and causes significant losses in treated sewage heat-recovering systems. This paper describes a physical approach to inhibit bacteria settlement and biofilm formation by Bacillus subtilis, which is the dominant species in treated sewage. Here, micro-patterned surfaces with different characteristics (stripe and cube) and dimensions (1–100 μm) were fabricated as surfaces of interest. Model sewage was prepared and a rotating coupon device was used to form the biofilms. Precision balance, scanning electron microscopy, and confocal laser scanning microscopy (CLSM) were employed to investigate the inhibitory effects and the mechanisms of the biofilm–surface interactions. The results have shown that surfaces with small pattern sizes (1 and 2 μm) all reduced biofilm formation significantly. Interestingly, the CLSM images showed that the surfaces do not play a role in “killing” the bacteria. These findings are useful for future development of new process surfaces on which bacteria settlement and biofilm formation can be inhibited or minimized.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bing Sun ◽  
Huaizhi Luo ◽  
Huan Jiang ◽  
Zhennan Wang ◽  
Aiqun Jia

Quorum sensing (QS) and biofilm formation inhibition activity of esculetin on Aeromonas hydrophila SHAe 115 were evaluated. Exposure to esculetin at 25, 50, and 100μg/ml significantly inhibited the production of protease and hemolysin, the formation of biofilms and attenuated the swarming motility of A. hydrophila SHAe 115. Biofilm forming inhibition was also observed through confocal laser scanning microscopy and scanning electron microscope. Quantitative real-time PCR analysis indicated that genes positively related to QS and biofilm formation were downregulated to varying degrees, while gene (litR) negatively related to biofilm formation was significantly upregulated. The phenotypic results were in good agreement with gene expression levels. These results indicated that esculetin would be a potential QS inhibitor for A. hydrophila.


2018 ◽  
Vol 45 (4) ◽  
pp. 1399-1409 ◽  
Author(s):  
Supeng Yin ◽  
Bei Jiang ◽  
Guangtao Huang ◽  
Yulong Zhang ◽  
Bo You ◽  
...  

Background/Aims: N-acetylcysteine (NAC) is a novel and promising agent with activity against bacterial biofilms. Human serum also inhibits biofilm formation by some bacteria. We tested whether the combination of NAC and human serum offers greater anti-biofilm activity than either agent alone. Methods: Microtiter plate assays and confocal laser scanning microscopy were used to evaluate bacterial biofilm formation in the presence of NAC and human serum. qPCR was used to examine expression of selected biofilm-associated genes. Extracellular matrix (ECM) was observed by transmission electron microscopy. The antioxidants GSH or ascorbic acid were used to replace NAC, and human transferrin, lactoferrin, or bovine serum albumin were used to replace serum proteins in biofilm formation assays. A rat central venous catheter model was developed to evaluate the effect of NAC on biofilm formation in vivo. Results: NAC and serum together increased biofilm formation by seven different bacterial strains. In Staphylococcus aureus, expression of genes for some global regulators and for genes in the ica-dependent pathway increased markedly. In Pseudomonas aeruginosa, transcription of las, the PQS quorum sensing (QS) systems, and the two-component system GacS/GacA increased significantly. ECM production by S. aureus and P. aeruginosa was also enhanced. The potentiation of biofilm formation is due mainly to interaction between NAC and transferrin. Intravenous administration of NAC increased colonization by S. aureus and P. aeruginosa on implanted catheters. Conclusions: NAC used intravenously or in the presence of blood increases bacterial biofilm formation rather than inhibits it.


Author(s):  
María Consuelo Latorre ◽  
María Jesús Pérez-Granda ◽  
Paul B Savage ◽  
Beatriz Alonso ◽  
Pablo Martín-Rabadán ◽  
...  

Abstract Background Ventilator-associated pneumonia is one of the most common nosocomial infections, caused mainly by bacterial/fungal biofilm. Therefore, it is necessary to develop preventive strategies to avoid biofilm formation based on new compounds. Objectives We performed an in vitro study to compare the efficacy of endotracheal tubes (ETTs) coated with the ceragenin CSA-131 and that of uncoated ETTs against the biofilm of clinical strains of Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Staphylococcus aureus (SA). Methods We applied an in vitro bench top model using coated and uncoated ETTs that were treated with three different clinical strains of PA, EC and SA for 5 days. After exposure to biofilm, ETTs were analysed for cfu count by culture of sonicate and total number of cells by confocal laser scanning microscopy. Results The median (IQR) cfu/mL counts of PA, EC and SA in coated and uncoated ETTs were, respectively, as follows: 1.00 × 101 (0.0–3.3 × 102) versus 3.32 × 109 (6.6 × 108–3.8 × 109), P &lt; 0.001; 0.0 (0.0–5.4 × 103) versus 1.32 × 106 (2.3 × 103–5.0 × 107), P &lt; 0.001; and 8.1 × 105 (8.5 × 101–1.4 × 109) versus 2.7 × 108 (8.6 × 106–1.6 × 1011), P = 0.058. The median (IQR) total number of cells of PA, EC and SA in coated and non-coated ETTs were, respectively, as follows: 11.0 [5.5–not applicable (NA)] versus 87.9 (60.5–NA), P = 0.05; 9.1 (6.7–NA) versus 62.6 (42.0–NA), P = 0.05; and 97.7 (94.6–NA) versus 187.3 (43.9–NA), P = 0.827. Conclusions We demonstrated significantly reduced biofilm formation in coated ETTs. However, the difference for SA was not statistically significant. Future clinical studies are needed to support our findings.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2498 ◽  
Author(s):  
Noya Ran ◽  
Jack Gilron ◽  
Revital Sharon-Gojman ◽  
Moshe Herzberg

Membrane fouling is a major obstacle in membrane bioreactors (MBRs) that treat wastewater. The addition of powdered activated carbon (PAC) is commonly suggested as a way to improve the MBR wastewater treatment process with respect to membrane fouling and effluent quality. Integrating the PAC addition into the MBR may also improve the stability of the acclimated microbial community for biodegrading the recalcitrant organic compounds that can also enhance membrane fouling. In this study, the ability of the MBR-PAC system to decrease membrane fouling was evaluated. Two pilot-scale reactors were operated: one reactor was supplemented with suspended PAC, and one was operated under similar conditions, without PAC. The feed to the reactors comprised domestic and olive oil mill wastewater. Surprisingly, the permeate flux and the membrane permeability decreased faster in the MBR supplemented with PAC compared to the control reactor. Corroborating these MBR fouling results, soluble microbial products (SMPs), originating from the PAC-supplemented reactor, were found to be more adhesive to an ultrafiltration membrane mimetic surface (polyether sulfone) as analyzed in a quartz crystal microbalance with dissipation monitoring (QCM-D). While the PAC had almost no effect on the dissolved organic carbon in the MBR, it altered the molecular weight distribution of the organic molecules in the SMP as observed with gel permeation chromatography: The fractions of 577–789 kDa and the one bigger than 4 × 103 kDa, were elevated and reduced, respectively, by the addition of PAC. A biofilm formation analysis using a confocal laser scanning microscopy showed a higher amount of biofilm on the membrane taken from the PAC reactor, but this membrane showed no traces of PAC particles when analyzed with a scanning electron microscope (SEM). Taken together, altering the composition of the dissolved organic matter in the MBR by PAC addition promoted its adhesion to the membrane, induced biofilm formation, and more prominently, decreased membrane permeability.


2020 ◽  
Vol 12 (21) ◽  
pp. 8863
Author(s):  
Jie Mei ◽  
Huize Chen ◽  
Qiang Liao ◽  
Abdul-Sattar Nizami ◽  
Ao Xia ◽  
...  

Dark fermentation of organic wastes, such as food waste and algae, via mixed hydrogen-producing bacteria (HPB) is considered a sustainable approach for hydrogen production. The biofilm system protects microorganisms from the harmful environment and avoids the excessive loss of bacteria caused by washout, which ensures that the dark fermentation process remains stable. In this study, a downflow anaerobic packed-bed reactor was commissioned to investigate the biofilm formation process of mixed HPB under various operational parameters. Scanning electron microscopy indicated changes in surface morphology during the biofilm formation period. Proteins and polysaccharides in extracellular polymeric substances were identified by confocal laser scanning microscopy to reveal their distribution characteristics. A hydraulic retention time of 0.5 d, a substrate concentration of 15 g/L and an HPB inoculum ratio of 35% were identified as the optimal operational parameters for biofilm formation. The diversity of bacteria between suspension and biofilm showed significantly different distributions; Clostridiales and Lactobacillales were identified as the dominant orders in the biofilm formation process. The abundances of Clostridiales and Lactobacillales were 15.1% and 56.2% in the biofilm, respectively.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2762
Author(s):  
Bo-Kyung Jeon ◽  
Chang-Ha Lee ◽  
A Reum Kim ◽  
Seung Hyun Han ◽  
Hyun-Jung Kim ◽  
...  

Oral biofilms coat all surfaces in the oral cavity including the exposed dentin surface. This study aimed to investigate biofilm removal by acid etching procedures and the effects of the residual biofilm on dentin surfaces on composite–dentin adhesion. Dentin discs were assigned to five groups: no biofilm formation (C); biofilm formation and no surface treatment (BF); biofilm formation and acid etching (BF-E); biofilm formation and acid etching followed by chlorhexidine soaking (BF-EC); and biofilm formation and rubbing with pumice, followed by acid etching (BF-RE). Biofilms were formed on saliva-precoated dentin discs by soaking the discs in Streptococcus mutans (S. mutans) suspension. Biofilm removal from the dentin surface was evaluated quantitatively and qualitatively by confocal laser scanning microscopy and scanning electron microscopy, respectively. To compare the bond strength of the biofilm-coated dentin discs with the surface treatments, specimens were assigned to four groups: no biofilm formation and acid etching (C-E); BF-E; BF-EC; and BF-RE. Assessments of the micro-shear bond strength and subsequent failure modes were performed. BF-E and BF-EC did not remove the biofilm, whereas BF-RE partially removed the biofilm attached to the dentin (p < 0.05). The bond strength of BF-RE was significantly higher than those of BF-E and BF-EC, but lower than that of C-E (p < 0.05). In conclusion, mechanical biofilm removal is recommended before etching procedures to enhance adhesion to the biofilm-coated dentin.


Sign in / Sign up

Export Citation Format

Share Document