scholarly journals Protein Aggregation as a Bacterial Strategy to Survive Antibiotic Treatment

2021 ◽  
Vol 8 ◽  
Author(s):  
Celien Bollen ◽  
Liselot Dewachter ◽  
Jan Michiels

While protein aggregation is predominantly associated with loss of function and toxicity, it is also known to increase survival of bacteria under stressful conditions. Indeed, protein aggregation not only helps bacteria to cope with proteotoxic stresses like heat shocks or oxidative stress, but a growing number of studies suggest that it also improves survival during antibiotic treatment by inducing dormancy. A well-known example of dormant cells are persisters, which are transiently refractory to the action of antibiotics. These persister cells can switch back to the susceptible state and resume growth in the absence of antibiotics, and are therefore considered an important cause of recurrence of infections. Mounting evidence now suggests that this antibiotic-tolerant persister state is tightly linked to—or perhaps even driven by—protein aggregation. Moreover, another dormant bacterial phenotype, the viable but non-culturable (VBNC) state, was also shown to be associated with aggregation. These results indicate that persisters and VBNC cells may constitute different stages of the same dormancy program induced by progressive protein aggregation. In this mini review, we discuss the relation between aggregation and bacterial dormancy, focusing on both persisters and VBNC cells. Understanding the link between protein aggregation and dormancy will not only provide insight into the fundamentals of bacterial survival, but could prove highly valuable in our future battle to fight them.

Open Biology ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 170229 ◽  
Author(s):  
Dorin Sade ◽  
Shira Shaham-Niv ◽  
Zohar A. Arnon ◽  
Omid Tavassoly ◽  
Ehud Gazit

The accumulation of various metabolites appears to be associated with diverse human diseases. However, the aetiological link between metabolic alteration and the observed diseases is still elusive. This includes the correlation between the abnormally high levels of homocysteine and quinolinic acid in Alzheimer's disease, as well as the accumulation of oncometabolites in malignant processes. Here, we suggest and discuss a possible mechanistic insight into metabolite accumulation in conditions such as neurodegenerative diseases and cancer. Our hypothesis is based on the demonstrated ability of metabolites to form amyloid-like structures in inborn error of metabolism disorders and the potential of such metabolite amyloids to promote protein aggregation. This notion can provide a new paradigm for neurodegeneration and cancer, as both conditions were linked to loss of function due to protein aggregation. Similar to the well-established observation of amyloid formation in many degenerative disorders, the formation of amyloids by tumour-suppressor proteins, including p53, was demonstrated in malignant states. Moreover, this new paradigm could fill the gap in understanding the high occurrence of specific types of cancer among genetic error of metabolism patients. This hypothesis offers a fresh view on the aetiology of some of the most abundant human maladies and may redirect the efforts towards new therapeutic developments.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1126
Author(s):  
Tijana Kosanovic ◽  
Dragan Sagic ◽  
Vladimir Djukic ◽  
Marija Pljesa-Ercegovac ◽  
Ana Savic-Radojevic ◽  
...  

Although the original data on systemic oxidative stress in COVID-19 patients have recently started to emerge, we are still far from a complete profile of changes in patients’ redox homeostasis. We aimed to assess the extent of oxidative damage of proteins, lipids and DNA during the course of acute disease, as well as their association with CT pulmonary patterns. In order to obtain more insight into the origin of the systemic oxidative stress, the observed parameters were correlated with inflammatory biomarkers and biomarkers of multiorgan impairment. In this prospective study, we included 58 patients admitted between July and October 2020 with COVID-19 pneumonia. Significant changes in malondialdehyde, 8-hydroxy-2’-deoxyguanosine and advanced oxidation protein products levels exist during the course of COVID-19. Special emphasis should be placed on the fact that the pattern of changes differs between non-hospitalized and hospitalized individuals. Our results point to the time-dependent relation of oxidative stress parameters with inflammatory and multiorgan impairment biomarkers, as well as pulmonary patterns in COVID-19 pneumonia patients. Correlation between redox biomarkers and immunological or multiorgan impairment biomarkers, as well as pulmonary CT pattern, confirms the suggested involvement of neutrophils networks, IL-6 production, along with different organ/tissue involvement in systemic oxidative stress in COVID-19.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 474 ◽  
Author(s):  
Carolina Luna ◽  
Alexis Arjona ◽  
Carmen Dueñas ◽  
Mario Estevez

Understanding the molecular basis of the disease is of the utmost scientific interest as it contributes to the development of targeted strategies of prevention, diagnosis, and therapy. Protein carbonylation is a typical feature of glyco-oxidative stress and takes place in health disorders such as diabetes. Allysine as well as its oxidation product, the α-amino adipic acid (α-AA) have been found to be markers of diabetes risk whereas little is known about the chemistry involved in its formation under hyperglycemic conditions. To provide insight into this issue, human serum albumin was incubated in the presence of FeCl3 (25 μM) and increasing glucose concentrations for 32 h at 37 °C. These concentrations were selected to simulate (i) physiological fasting plasma concentration (4 mM), (ii) pathological pre-diabetes fasting plasma concentration (8 mM), and pathological diabetes fasting plasma concentration (12 mM) of glucose. While both allysine and α-AA were found to increase with increasing glucose concentrations, the carboxylic acid was only detected at pathological glucose concentrations and appeared to be a more reliable indicator of glyco-oxidative stress. The underlying chemical mechanisms of lysine glycation as well as of the depletion of tryptophan and formation of fluorescent and colored advanced glycation products are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oscar Aubi ◽  
Karina S. Prestegård ◽  
Kunwar Jung-KC ◽  
Tie-Jun Sten Shi ◽  
Ming Ying ◽  
...  

AbstractPhenylketonuria (PKU) is caused by autosomal recessive variants in phenylalanine hydroxylase (PAH), leading to systemic accumulation of L-phenylalanine (L-Phe) that may reach neurotoxic levels. A homozygous Pah-R261Q mouse, with a highly prevalent misfolding variant in humans, reveals the expected hepatic PAH activity decrease, systemic L-Phe increase, L-tyrosine and L-tryptophan decrease, and tetrahydrobiopterin-responsive hyperphenylalaninemia. Pah-R261Q mice also present unexpected traits, including altered lipid metabolism, reduction of liver tetrahydrobiopterin content, and a metabolic profile indicative of oxidative stress. Pah-R261Q hepatic tissue exhibits large ubiquitin-positive, amyloid-like oligomeric aggregates of mutant PAH that colocalize with selective autophagy markers. Together, these findings reveal that PKU, customarily considered a loss-of-function disorder, can also have toxic gain-of-function contribution from protein misfolding and aggregation. The proteostasis defect and concomitant oxidative stress may explain the prevalence of comorbid conditions in adult PKU patients, placing this mouse model in an advantageous position for the discovery of mutation-specific biomarkers and therapies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mercedes M. Pérez-Jiménez ◽  
José M. Monje-Moreno ◽  
Ana María Brokate-Llanos ◽  
Mónica Venegas-Calerón ◽  
Alicia Sánchez-García ◽  
...  

AbstractAging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer’s disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1874
Author(s):  
Suwei Chen ◽  
Sarah J. Annesley ◽  
Rasha A. F. Jasim ◽  
Paul R. Fisher

Mitochondrial dysfunction has been implicated in the pathology of Parkinson’s disease (PD). In Dictyostelium discoideum, strains with mitochondrial dysfunction present consistent, AMPK-dependent phenotypes. This provides an opportunity to investigate if the loss of function of specific PD-associated genes produces cellular pathology by causing mitochondrial dysfunction with AMPK-mediated consequences. DJ-1 is a PD-associated, cytosolic protein with a conserved oxidizable cysteine residue that is important for the protein’s ability to protect cells from the pathological consequences of oxidative stress. Dictyostelium DJ-1 (encoded by the gene deeJ) is located in the cytosol from where it indirectly inhibits mitochondrial respiration and also exerts a positive, nonmitochondrial role in endocytosis (particularly phagocytosis). Its loss in unstressed cells impairs endocytosis and causes correspondingly slower growth, while also stimulating mitochondrial respiration. We report here that oxidative stress in Dictyostelium cells inhibits mitochondrial respiration and impairs phagocytosis in an AMPK-dependent manner. This adds to the separate impairment of phagocytosis caused by DJ-1 knockdown. Oxidative stress also combines with DJ-1 loss in an AMPK-dependent manner to impair or exacerbate defects in phototaxis, morphogenesis and growth. It thereby phenocopies mitochondrial dysfunction. These results support a model in which the oxidized but not the reduced form of DJ-1 inhibits AMPK in the cytosol, thereby protecting cells from the adverse consequences of oxidative stress, mitochondrial dysfunction and the resulting AMPK hyperactivity.


2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1089
Author(s):  
Acharya Balkrishna ◽  
Akansha Rohela ◽  
Abhishek Kumar ◽  
Ashwani Kumar ◽  
Vedpriya Arya ◽  
...  

Drug resistance among microbial pathogens and oxidative stress caused by reactive oxygen species are two of the most challenging global issues. Firstly, drug-resistant pathogens cause several fatalities every year. Secondly aging and a variety of diseases, such as cardiovascular disease and cancer, are associated with free radical generated oxidative stress. The treatments currently available are limited, ineffective, or less efficient, so there is an immediate need to tackle these issues by looking for new therapies to resolve resistance and neutralize the harmful effects of free radicals. In the 21st century, the best way to save humans from them could be by using plants as well as their bioactive constituents. In this specific context, Jasminum is a major plant genus that is used in the Ayurvedic system of medicine to treat a variety of ailments. The information in this review was gathered from a variety of sources, including books, websites, and databases such as Science Direct, PubMed, and Google Scholar. In this review, a total of 14 species of Jasminum have been found to be efficient and effective against a wide variety of microbial pathogens. In addition, 14 species were found to be active free radical scavengers. The review is also focused on the disorders related to oxidative stress, and it was concluded that Jasminum grandiflorum and J. sambac normalized various parameters that were elevated by free radical generation. Alkaloids, flavonoids (rutoside), terpenes, phenols, and iridoid glucosides are among the main phytoconstituents found in various Jasminum species. Furthermore, this review also provides insight into the mechanistic basis of drug resistance, the generation of free radicals, and the role of Jasminum plants in combating resistance and neutralizing free radicals.


Sign in / Sign up

Export Citation Format

Share Document