scholarly journals Effects of Hydrogen Peroxide Stress on the Nucleolar Redox Environment and Pre-rRNA Maturation

2021 ◽  
Vol 8 ◽  
Author(s):  
Russell T. Sapio ◽  
Chelsea J. Burns ◽  
Dimitri G. Pestov

Identifying biologically relevant molecular targets of oxidative stress may provide new insights into disease mechanisms and accelerate development of novel biomarkers. Ribosome biogenesis is a fundamental prerequisite for cellular protein synthesis, but how oxidative stress affects ribosome biogenesis has not been clearly established. To monitor and control the redox environment of ribosome biogenesis, we targeted a redox-sensitive roGFP reporter and catalase, a highly efficient H2O2 scavenger, to the nucleolus, the primary site for transcription and processing of rRNA in eukaryotic cells. Imaging of mouse 3T3 cells exposed to non-cytotoxic H2O2 concentrations revealed increased oxidation of the nucleolar environment accompanied by a detectable increase in the oxidative damage marker 8-oxo-G in nucleolar RNA. Analysis of pre-rRNA processing showed a complex pattern of alterations in pre-rRNA maturation in the presence of H2O2, including inhibition of the transcription and processing of the primary 47S transcript, accumulation of 18S precursors, and inefficient 3′-end processing of 5.8S rRNA. This work introduces new tools for studies of the redox biology of the mammalian nucleolus and identifies pre-rRNA maturation steps sensitive to H2O2 stress.

Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Federico Pietrocola ◽  
José Manuel Bravo-San Pedro

Reactive oxygen species (ROS) operate as key regulators of cellular homeostasis within a physiological range of concentrations, yet they turn into cytotoxic entities when their levels exceed a threshold limit. Accordingly, ROS are an important etiological cue for obesity, which in turn represents a major risk factor for multiple diseases, including diabetes, cardiovascular disorders, non-alcoholic fatty liver disease, and cancer. Therefore, the implementation of novel therapeutic strategies to improve the obese phenotype by targeting oxidative stress is of great interest for the scientific community. To this end, it is of high importance to shed light on the mechanisms through which cells curtail ROS production or limit their toxic effects, in order to harness them in anti-obesity therapy. In this review, we specifically discuss the role of autophagy in redox biology, focusing on its implication in the pathogenesis of obesity. Because autophagy is specifically triggered in response to redox imbalance as a quintessential cytoprotective mechanism, maneuvers based on the activation of autophagy hold promises of efficacy for the prevention and treatment of obesity and obesity-related morbidities.


2011 ◽  
Vol 435 (2) ◽  
pp. 519-528 ◽  
Author(s):  
Brian E. Sansbury ◽  
Daniel W. Riggs ◽  
Robert E. Brainard ◽  
Joshua K. Salabei ◽  
Steven P. Jones ◽  
...  

During cardiac remodelling, the heart generates higher levels of reactive species; yet an intermediate ‘compensatory’ stage of hypertrophy is associated with a greater ability to withstand oxidative stress. The mechanisms underlying this protected myocardial phenotype are poorly understood. We examined how a cellular model of hypertrophy deals with electrophilic insults, such as would occur upon ischaemia or in the failing heart. For this, we measured energetics in control and PE (phenylephrine)-treated NRCMs (neonatal rat cardiomyocytes) under basal conditions and when stressed with HNE (4-hydroxynonenal). PE treatment caused hypertrophy as indicated by augmented atrial natriuretic peptide and increased cellular protein content. Hypertrophied myocytes demonstrated a 2.5-fold increase in ATP-linked oxygen consumption and a robust augmentation of oligomycin-stimulated glycolytic flux and lactate production. Hypertrophied myocytes displayed a protected phenotype that was resistant to HNE-induced cell death and a unique bioenergetic response characterized by a delayed and abrogated rate of oxygen consumption and a 2-fold increase in glycolysis upon HNE exposure. This augmentation of glycolytic flux was not due to increased glucose uptake, suggesting that electrophile stress results in utilization of intracellular glycogen stores to support the increased energy demand. Hypertrophied myocytes also had an increased propensity to oxidize HNE to 4-hydroxynonenoic acid and sustained less protein damage due to acute HNE insults. Inhibition of aldehyde dehydrogenase resulted in bioenergetic collapse when myocytes were challenged with HNE. The integration of electrophile metabolism with glycolytic and mitochondrial energy production appears to be important for maintaining myocyte homoeostasis under conditions of increased oxidative stress.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Daniel N Meijles ◽  
Imad Al Ghouleh ◽  
Sanghamitra Sahoo ◽  
Jefferson H Amaral ◽  
Heather Knupp ◽  
...  

Organismal aging represents an independent risk factor underlying many vascular diseases, including systemic and pulmonary hypertension, and atherosclerosis. While the mechanisms driving aging are largely elusive, a steady persistent increase in tissue oxidative stress has been associated with senescence. Previously we showed TSP1 elicits NADPH oxidase (Nox)-dependent vascular smooth muscle cell oxidative stress. However mechanisms by which TSP1 affects endothelial redox biology are unknown. Here, we tested the hypothesis that TSP1 induces endothelial oxidative stress-linked senescence in aging. Using rapid autopsy disease-free human pulmonary (PA) artery, we identified a significant positive correlation between age, protein levels of TSP1, Nox1 and the cell-cycle repressor p21cip (p<0.05). Age also positively associated with increased Amplex Red-detected PA hydrogen peroxide levels (p<0.05). Moreover, treatment of human PA endothelial cells (HPAEC) with TSP1 (2.2nM; 24h) increased expression (~1.9 fold; p<0.05) and activation of Nox1 (~1.7 fold; p<0.05) compared to control, as assessed by Western blot and SOD-inhibitable cytochrome c reduction. Western blotting and immunofluorescence showed a TSP1-mediated increase in p53 activation, indicative of the DNA damage response. Moreover, TSP1 significantly increased HPAEC senescence in a p53/p21cip/Rb-dependent manner, as assessed by immunofluorescent detection of subcellular localization and senescence-associated β-galactosidase staining. To explore this pathway in vivo, middle-aged (8-10 month) wild-type and TSP1-null mice were utilized. In the TSP1-null, reduced lung senescence, oxidative stress, Nox1 levels and p21cip expression were observed compared to wild-type supporting findings in human samples and cell experiments. Finally, prophylactic treatment with specific Nox1 inhibitor NoxA1ds (10μM) attenuated TSP1-induced HPAEC ROS, p53 activation, p21cip expression and senescence. Taken together, our results provide molecular insight into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence, with implications for molecular control of the aging process.


Antioxidants ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 119 ◽  
Author(s):  
Takuji Kawamura ◽  
Isao Muraoka

It is well established that the increase in reactive oxygen species (ROS) and free radicals production during exercise has both positive and negative physiological effects. Among them, the present review focuses on oxidative stress caused by acute exercise, mainly on evidence in healthy individuals. This review also summarizes findings on the determinants of exercise-induced oxidative stress and sources of free radical production. Moreover, we outline the effects of antioxidant supplementation on exercise-induced oxidative stress, which have been studied extensively. Finally, the following review briefly summarizes future tasks in the field of redox biology of exercise. In principle, this review covers findings for the whole body, and describes human trials and animal experiments separately.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Samuel H. Becker ◽  
Kathrin Ulrich ◽  
Avantika Dhabaria ◽  
Beatrix Ueberheide ◽  
William Beavers ◽  
...  

ABSTRACT The bacterial pathogen Mycobacterium tuberculosis is the leading cause of death by an infectious disease among humans. Here, we describe a previously uncharacterized M. tuberculosis protein, Rv0991c, as a molecular chaperone that is activated by oxidation. Rv0991c has homologs in most bacterial lineages and appears to function analogously to the well-characterized Escherichia coli redox-regulated chaperone Hsp33, despite a dissimilar protein sequence. Rv0991c is transcriptionally coregulated with hsp60 and hsp70 chaperone genes in M. tuberculosis, suggesting that Rv0991c functions with these chaperones in maintaining protein quality control. Supporting this hypothesis, we found that, like oxidized Hsp33, oxidized Rv0991c prevents the aggregation of a model unfolded protein in vitro and promotes its refolding by the M. tuberculosis Hsp70 chaperone system. Furthermore, Rv0991c interacts with DnaK and can associate with many other M. tuberculosis proteins. We therefore propose that Rv0991c, which we named “Ruc” (redox-regulated protein with unstructured C terminus), represents a founding member of a new chaperone family that protects M. tuberculosis and other species from proteotoxicity during oxidative stress. IMPORTANCE M. tuberculosis infections are responsible for more than 1 million deaths per year. Developing effective strategies to combat this disease requires a greater understanding of M. tuberculosis biology. As in all cells, protein quality control is essential for the viability of M. tuberculosis, which likely faces proteotoxic stress within a host. Here, we identify an M. tuberculosis protein, Ruc, that gains chaperone activity upon oxidation. Ruc represents a previously unrecognized family of redox-regulated chaperones found throughout the bacterial superkingdom. Additionally, we found that oxidized Ruc promotes the protein-folding activity of the essential M. tuberculosis Hsp70 chaperone system. This work contributes to a growing body of evidence that oxidative stress provides a particular strain on cellular protein stability.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 567 ◽  
Author(s):  
Fernando J. Peña ◽  
Cristian O’Flaherty ◽  
José M. Ortiz Rodríguez ◽  
Francisco E. Martín Cano ◽  
Gemma L. Gaitskell-Phillips ◽  
...  

Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.


2008 ◽  
Vol 75 (2) ◽  
pp. 66-67 ◽  
Author(s):  
Alexander M. Wolf ◽  
Sadamitsu Asoh ◽  
Ikuroh Ohsawa ◽  
Shigeo Ohta

1983 ◽  
Vol 210 (1) ◽  
pp. 183-192 ◽  
Author(s):  
K P Dudov ◽  
M D Dabeva

Kinetic experiments on RNA labelling in vivo with [14C]orotate were performed with normal and 12h-regenerating rat liver. The specific radioactivities of nucleolar, nucleoplasmic and cytoplasmic rRNA species were analysed by computer according to the models of rRNA processing and nucleo-cytoplasmic migration given previously [Dudov, Dabeva, Hadjiolov & Todorov, Biochem. J. (1978) 171, 375-383]. The rates of formation and the half-lives of the individual pre-rRNA and rRNA species were determined in both normal and regenerating liver. The results show clearly that the formation of ribosomes in regenerating rat liver is post-transcriptionally activated: (a) the half-lives of all the nucleolar pre-rRNA and rRNA species are decreased by 30% on average; (b) the pre-rRNA processing is directed through the shortest maturation pathway: 45 S leads to 32 S + 18 S leads to 28 S; (c) the nucleo-cytoplasmic transfer of ribosomes is accelerated. As a consequence, the time for formation and appearance of ribosomes in the cytoplasm is shortened 1.5-fold for the large and 2-fold for the small subparticle. A new scheme for endonuclease cleavage of 45 S pre-rRNA is proposed, which explains the alterations in pre-rRNA processing in regenerating liver. Its validity for pre-rRNA processing in other eukaryotes is discussed. It is concluded that: (i) the control sites in the intranucleolar formation of 28 S and 18 S rRNA are the immediate precursor of 28 S rRNA, 32 S pre-rRNA, and the primary pre-rRNA, 45 S pre-rRNA, respectively; (ii) the limiting step in the post-transcriptional stages of ribosome biogenesis is the pre-rRNA maturation.


2014 ◽  
Vol 50 (60) ◽  
pp. 8181-8184 ◽  
Author(s):  
Jonathan Yeow ◽  
Amandeep Kaur ◽  
Matthew D. Anscomb ◽  
Elizabeth J. New

A fluorescent sensor for redox state shows reversible oxidation/reduction at biologically-relevant potentials, and is used to visualise cellular oxidative capacity.


Sign in / Sign up

Export Citation Format

Share Document