scholarly journals A novel flavin derivative reveals the impact of glucose on oxidative stress in adipocytes

2014 ◽  
Vol 50 (60) ◽  
pp. 8181-8184 ◽  
Author(s):  
Jonathan Yeow ◽  
Amandeep Kaur ◽  
Matthew D. Anscomb ◽  
Elizabeth J. New

A fluorescent sensor for redox state shows reversible oxidation/reduction at biologically-relevant potentials, and is used to visualise cellular oxidative capacity.

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 767
Author(s):  
He N. Xu ◽  
Joanna Floros ◽  
Lin Z. Li ◽  
Shaili Amatya

Employing the optical redox imaging technique, we previously identified a significant redox shift of nicotinamide adenine dinucleotide (NAD and the reduced form NADH) in freshly isolated alveolar macrophages (AM) from ozone-exposed mice. The goal here was twofold: (a) to determine the NAD(H) redox shift in cryopreserved AM isolated from ozone-exposed mice and (b) to investigate whether there is a difference in the redox status between cryopreserved and freshly isolated AM. We found: (i) AM from ozone-exposed mice were in a more oxidized redox state compared to that from filtered air (FA)-exposed mice, consistent with the results obtained from freshly isolated mouse AM; (ii) under FA exposure, there was no significant NAD(H) redox difference between fresh AM that had been placed on ice for 2.5 h and cryopreserved AM; however, under ozone exposure, fresh AM were more oxidized than cryopreserved AM; (iii) via the use of nutrient starvation and replenishment and H2O2-induced oxidative stress of an AM cell line, we showed that this redox difference between cryopreserved and freshly isolated AM is likely the result of the double “hit”, i.e., the ozone-induced oxidative stress plus nutrient starvation that prevented freshly isolated AM from a full recovery after being on ice for a prolonged time period. The cryopreservation technique we developed eliminates/minimizes the effects of oxidative stress and nutrient starvation on cells. This method can be adopted to preserve lung macrophages from animal models or clinical patients for further investigations.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Alessandra Bosutti ◽  
Hans Degens

Abstract While reactive oxygen species (ROS) play a role in muscle repair, excessive amounts of ROS for extended periods may lead to oxidative stress. Antioxidants, as resveratrol (RS), may reduce oxidative stress, restore mitochondrial function and promote myogenesis and hypertrophy. However, RS dose-effectiveness for muscle plasticity is unclear. Therefore, we investigated RS dose-response on C2C12 myoblast and myotube plasticity 1. in the presence and 2. absence of different degrees of oxidative stress. Low RS concentration (10 μM) stimulated myoblast cell cycle arrest, migration and sprouting, which were inhibited by higher doses (40–60 μM). RS did not increase oxidative capacity. In contrast, RS induced mitochondria loss, reduced cell viability and ROS production and activated stress response pathways [Hsp70 and pSer36-p66(ShcA) proteins]. However, the deleterious effects of H2O2 (1000 µM) on cell migration were alleviated after preconditioning with 10 µM-RS. This dose also enhanced cell motility mediated by 100 µM-H2O2, while higher RS-doses augmented the H2O2-induced impaired myoblast regeneration and mitochondrial dehydrogenase activity. In conclusion, low resveratrol doses promoted in vitro muscle regeneration and attenuated the impact of ROS, while high doses augmented the reduced plasticity and metabolism induced by oxidative stress. Thus, the effects of resveratrol depend on its dose and degree of oxidative stress.


2017 ◽  
Vol 68 (6) ◽  
pp. 1381-1383
Author(s):  
Allia Sindilar ◽  
Carmen Lacramioara Zamfir ◽  
Eusebiu Viorel Sindilar ◽  
Alin Constantin Pinzariu ◽  
Eduard Crauciuc ◽  
...  

Endometriosis is described as a gynecological disorder characterized by the presence of endometrial tissue outside the uterus; extensively explored because of its increasing incidency, with an indubitable diagnostic only after invasive surgery, with no efficient treatment, it has still many aspects to be elucidated. A growing body of facts sustain oxidative stress as a crucial factor between the numerous incriminated factors implicated in endometriosis ethiopathogeny. Reactive oxygen species(ROS) act to decline reproductive function. Our study intends to determine if an experimental model of endometriosis may be useful to assess the impact of oxidative stress on endometrial cells; we have used a murine model of 18 adult Wistar female rats. A fragment from their left uterine horn was implanted in the abdominal wall. After 4 weeks, a laparatomy was performed, 5 endometrial implants were removed, followed by biochemical tissue assay of superoxide dismutase(SOD) and catalase(CAT). At the end of the experiment, the rats were sacrificed, the implants were removed for histopathological exam and biochemical assay of antioxidant enzymes. The results revealed decreased levels of antioxidant enzymes, pointing on significant oxidative stress involvement.


2020 ◽  
Vol 19 (6) ◽  
pp. 466-477
Author(s):  
Saïd Boujraf ◽  
Rachida Belaïch ◽  
Abdelkhalek Housni ◽  
Badreeddine Alami ◽  
Tariq Skalli ◽  
...  

Objective: The aim of this paper is to demonstrate the impact of hemodialysis (HD) using synthetic Helixone membrane on brain functional control reorganization and plasticity in the cortical area generated while Oxidative Stress (OS) would be the main impacting agent. Methods: Indeed, 9 chronic HD patients underwent identical brain BOLD-fMRI assessment using the motor paradigm immediately before and after the same HD sessions. To assess the oxidative stress, the same patients underwent biological-assessment, including Malondialdehyde (MDA) and Total- Antioxidant-Activity (TAOA) reported in earlier papers. Results: BOLD-fMRI maps of motor areas obtained from HD-patients before and after HD sessions revealed a significant enhancement of activation volume of the studied motor cortex after HD reflecting brain plasticity. Results were correlated with OS assessed by the measurement of MDA and TAOA; this correlation was close to 1. Conclusion: Indeed, HD enhances the inflammatory state of brain tissues reflected by the increased OS. The functional brain reaction demonstrated a functional activity reorganization to overcome the inflammatory state and OS enhanced by HD process. This functional activity reorganization reveals brain plasticity induced by OS originated by HD.


2020 ◽  
Vol 10 (5) ◽  
pp. 578-586
Author(s):  
Areeg M. Abdelrazek ◽  
Shimaa A. Haredy

Background: Busulfan (Bu) is an anticancer drug with a variety of adverse effects for cancer patients. Oxidative stress has been considered as a common pathological mechanism and it has a key role in the initiation and progression of liver injury by Bu. Aim: The study aimed to evaluate the antioxidant impact of L-Carnitine and Coenzyme Q10 and their protective role against oxidative stress damage in liver tissues. Methods and Material: Thirty-six albino rats were divided equally into six groups. G1 (con), received I.P. injection of DMSO plus 1 ml of distilled water daily by oral gavages; G2 (Bu), received I.P. injection of Bu plus 1 ml of the distilled water daily; G3 (L-Car), received 1 ml of L-Car orally; G4 (Bu + L-Car) received I.P. injection of Bu plus 1 ml of L-Car, G5 (CoQ10) 1 ml of CoQ10 daily; and G6 (Bu + CoQ10) received I.P. injection of Bu plus 1 ml of CoQ10 daily. Results: The recent data showed that Bu induced significant (P<0.05) elevation in serum ALT, AST, liver GSSG, NO, MDA and 8-OHDG, while showing significant (P<0.05) decrease in liver GSH and ATP. On the other hand, L-Carnitine and Coenzyme Q10 ameliorated the negative effects prompted by Bu. Immunohistochemical expression of caspase-3 in liver tissues reported pathological alterations in Bu group while also showed significant recovery in L-Car more than CoQ10. Conclusion: L-Car, as well as CoQ10, can enhance the hepatotoxic effects of Bu by promoting energy production in oxidative phosphorylation process and by scavenging the free radicals.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 986
Author(s):  
Nada S. Aboelella ◽  
Caitlin Brandle ◽  
Timothy Kim ◽  
Zhi-Chun Ding ◽  
Gang Zhou

It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.


2021 ◽  
Vol 10 (5) ◽  
pp. 1148
Author(s):  
Makedonka Atanasovska Velkovska ◽  
Katja Goričar ◽  
Tanja Blagus ◽  
Vita Dolžan ◽  
Barbara Cvenkel

Oxidative stress and neuroinflammation are involved in the pathogenesis and progression of glaucoma. Our aim was to evaluate the impact of selected single-nucleotide polymorphisms in inflammation and oxidative stress genes on the risk of glaucoma, the patients’ clinical characteristics and the glaucoma phenotype. In total, 307 patients with primary open-angle glaucoma or ocular hypertension were enrolled. The control group included 339 healthy Slovenian blood donors. DNA was isolated from peripheral blood. Genotyping was performed for SOD2 rs4880, CAT rs1001179, GPX1 rs1050450, GSTP1 rs1695, GSTM1 gene deletion, GSTT1 gene deletion, IL1B rs1143623, IL1B rs16944, IL6 rs1800795 and TNF rs1800629. We found a nominally significant association of GSTM1 gene deletion with decreased risk of ocular hypertension and a protective role of IL1B rs16944 and IL6 rs1800629 in the risk of glaucoma. The CT and TT genotypes of GPX1 rs1050450 were significantly associated with advanced disease, lower intraocular pressure and a larger vertical cup–disc ratio. In conclusion, genetic variability in IL1B and IL6 may be associated with glaucoma risk, while GPX and TNF may be associated with the glaucoma phenotype. In the future, improved knowledge of these pathways has the potential for new strategies and personalised treatment of glaucoma.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3167
Author(s):  
Flavia Buonaurio ◽  
Maria Luisa Astolfi ◽  
Daniela Pigini ◽  
Giovanna Tranfo ◽  
Silvia Canepari ◽  
...  

Urinary concentrations of 16 different exposure biomarkers to metals were determined at the beginning and at the end of a working shift on a group of workers in the metal carpentry industry. Five different oxidative stress biomarkers were also measured, such as the oxidation products of RNA and DNA metabolized and excreted in the urine. The results of workers exposed to metals were compared to those of a control group. The metal concentrations found in these workers were well below the occupational exposure limit values and exceeded the mean concentrations of the same metals in the urine of the control group by a factor of four at maximum. Barium (Ba), mercury (Hg), lead (Pb) and strontium (Sr) were correlated with the RNA oxidative stress biomarker, 8-oxo-7, 8-dihydroguanosine (8-oxoGuo), which was found able to discriminate exposed workers from controls with a high level of specificity and sensitivity. The power of this early diagnostic technique was assessed by means of the ROC curve. Ba, rubidium (Rb), Sr, tellurium (Te), and vanadium (V) were correlated with the level of the protein oxidation biomarker 3-Nitrotyrosine (3-NO2Tyr), and Ba, beryllium (Be), copper (Cu), and Rb with 5-methylcytidine (5-MeCyt), an epigenetic marker of RNA damage. These effect biomarkers can help in identifying those workers that can be defined as “occupationally exposed” even at low exposure levels, and they can provide information about the impact that such doses have on their health.


Sign in / Sign up

Export Citation Format

Share Document