scholarly journals 4.1N-Mediated Interactions and Functions in Nerve System and Cancer

2021 ◽  
Vol 8 ◽  
Author(s):  
Qin Yang ◽  
Jing Liu ◽  
Zi Wang

Scaffolding protein 4.1N is a neuron-enriched 4.1 homologue. 4.1N contains three conserved domains, including the N-terminal 4.1-ezrin-radixin-moesin (FERM) domain, internal spectrin–actin–binding (SAB) domain, and C-terminal domain (CTD). Interspersed between the three domains are nonconserved domains, including U1, U2, and U3. The role of 4.1N was first reported in the nerve system. Then, extensive studies reported the role of 4.1N in cancers and other diseases. 4.1N performs numerous vital functions in signaling transduction by interacting, locating, supporting, and coordinating different partners and is involved in the molecular pathogenesis of various diseases. In this review, recent studies on the interactions between 4.1N and its contactors (including the α7AChr, IP3R1, GluR1/4, GluK1/2/3, mGluR8, KCC2, D2/3Rs, CASK, NuMA, PIKE, IP6K2, CAM 1/3, βII spectrin, flotillin-1, pp1, and 14-3-3) and the 4.1N-related biological functions in the nerve system and cancers are specifically and comprehensively discussed. This review provides critical detailed mechanistic insights into the role of 4.1N in disease relationships.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Cheng-Han Tsai ◽  
Yi-Jang Lee

Actin depolymerizing factor (ADF)/cofilin, an actin-binding protein ubiquitously expressed in a variety of organisms, is required for regulation of actin dynamics. The activity of ADF/cofilin is dependent on serine 3 phosphorylation by LIM kinase (LIMK), which is regulated by the Rho small GTPase signaling pathway. ADF/cofilin is strongly associated with several important cell biological functions, including cell cycle, morphological maintenance, and locomotion. These functions affect several biological events, including embryogenesis, oncology, nephropathy, and neurodegenerations. Here, we focus on the biochemical and pathophysiological role of ADF/cofilin in mammals.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


2021 ◽  
Vol 22 (16) ◽  
pp. 8461
Author(s):  
Emanuela Chiarella ◽  
Annamaria Aloisio ◽  
Stefania Scicchitano ◽  
Heather Mandy Bond ◽  
Maria Mesuraca

Powerful bioinformatics tools have provided a wealth of novel miRNA–transcription factor networks crucial in controlling gene regulation. In this review, we focus on the biological functions of miRNAs targeting ZNF521, explaining the molecular mechanisms by which the dysregulation of this axis contributes to malignancy. ZNF521 is a stem cell-associated co-transcription factor implicated in the regulation of hematopoietic, neural, and mesenchymal stem cells. The aberrant expression of ZNF521 transcripts, frequently associated with miRNA deregulation, has been detected in several tumors including pancreatic, hepatocellular, gastric, bladder transitional cell carcinomas as well as in breast and ovarian cancers. miRNA expression profiling tools are currently identifying a multitude of miRNAs, involved together with oncogenes and TFs in the regulation of oncogenesis, including ZNF521, which may be candidates for diagnostic and prognostic biomarkers of cancer.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Chunliang Shang ◽  
Jie Qiao ◽  
Hongyan Guo

AbstractThe pre-metastatic niche is a favorable microenvironment for the colonization of metastatic tumor cells in specific distant organs. Lipid droplets (LDs, also known as lipid bodies or adiposomes) have increasingly been recognized as lipid-rich, functionally dynamic organelles within tumor cells, immune cells, and other stromal cells that are linked to diverse biological functions and human diseases. Moreover, in recent years, several studies have described the indispensable role of LDs in the development of pre-metastatic niches. This review discusses current evidence related to the biogenesis, composition, and functions of LDs related to the following characteristics of the pre-metastatic niche: immunosuppression, inflammation, angiogenesis/vascular permeability, lymphangiogenesis, organotropism, reprogramming. We also address the function of LDs in mediating pre-metastatic niche formation. The potential of LDs as markers and targets for novel antimetastatic therapies will be discussed.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiulin Jiang ◽  
Baiyang Liu ◽  
Zhi Nie ◽  
Lincan Duan ◽  
Qiuxia Xiong ◽  
...  

AbstractN6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.


2014 ◽  
Vol 54 (12) ◽  
pp. 1700-1709 ◽  
Author(s):  
Chen Yun ◽  
Li Gang ◽  
Gu Rongmin ◽  
Wen Xu ◽  
Ming Xuezhi ◽  
...  

2003 ◽  
Vol 44 (sup3) ◽  
pp. S5-S12 ◽  
Author(s):  
Laura Pasqualucci ◽  
Oxana Bereschenko ◽  
Huifeng Niu ◽  
Ulf Klein ◽  
Katia Basso ◽  
...  

Author(s):  
Usama Abbasi ◽  
Srinivas Abbina ◽  
Arshdeep Gill ◽  
Lily E. Takuechi ◽  
Jayachandran N. Kizhakkedathu

Sign in / Sign up

Export Citation Format

Share Document