scholarly journals Ubiquitination Destabilizes Protein Sphingosine Kinase 2 to Regulate Glioma Malignancy

2021 ◽  
Vol 15 ◽  
Author(s):  
Hongliang Wang ◽  
Bing Zhao ◽  
Erbao Bian ◽  
Gang Zong ◽  
Jie He ◽  
...  

Gliomas are the most common and lethal malignant tumor in the central nervous system. The tumor oncogene sphingosine kinase 2 (SphK2) was previously found to be upregulated in glioma tissues and enhance glioma cell epithelial-to-mesenchymal transition through the AKT/β-catenin pathway. Nevertheless, ubiquitination of SphK2 protein has yet to be well elucidated. In this study, mass spectrometry analysis was performed to identify proteins that interacted with SphK2 protein. Co-immunoprecipitation (co-IP) and immunoblotting (IB) were used to prove the specific interaction between SphK2 protein and the neural precursor cell-expressed developmentally downregulated 4-like (NEDD4L) protein. Fluorescence microscopy was used for detecting the distribution of related proteins. Ubiquitylation assay was utilized to characterize that SphK2 was ubiquitylated by NEDD4L. Cell viability assay, flow cytometry assay, and transwell invasion assay were performed to illustrate the roles of NEDD4L-mediated SphK2 ubiquitination in glioma viability, apoptosis, and invasion, respectively. We found that NEDD4L directly interacted with SphK2 and ubiquinated it for degradation. Ubiquitination of SphK2 mediated by NEDD4L overexpression suppressed glioma cell viability and invasion but promoted glioma apoptosis. Knockdown of NEDD4L presented opposite results. Moreover, further results suggested that ubiquitination of SphK2 regulated glioma malignancy via the AKT/β-catenin pathway. in vivo assay also supported the above findings. This study reveals that NEDD4L mediates SphK2 ubiquitination to regulate glioma malignancy and may provide some meaningful suggestions for glioma treatment.

2020 ◽  
Author(s):  
Jinbiao Xiong ◽  
Gaochao Guo ◽  
Lianmei Guo ◽  
Zengguang Wang ◽  
Zhijuan Chen ◽  
...  

Abstract Background: Temozolomide (TMZ), as the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM), often fails to improve the prognosis of GBM patients due to the quick development of resistance. The need for more effective management of GBM is urgent. The aim of this study is to evaluate the efficacy of combined therapy with TMZ and amlexanox, a selective inhibitor of inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE), for GBM.Methods: in vitro, cell viability assay, apoptosis analysis, western blot, migration and invasion assay were used. In vivo, intracranial tumor models were constructed and the immunohistochemistry were used. Results: We found that combined treatment resulted in significant induction of cellular apoptosis and the inhibition of cell viability, migration and invasion in primary glioma cell and in the human glioma cell line, U87 MG. TMZ enhanced expression of phosphoration of adenosine 5‘-monophosphate-activated protein kinase (p-AMPK) and amlexanox led to reduction of IKBKE, with no impact on p-AMPK. Furthermore, we demonstrated that, compared to other groups treated with each component alone, TMZ combined with amlexanox effectively inhibited phosphorylation of protein kinase B (AKT) and mammalian target of rapamycin (mTOR). In addition, the combination treatment also clearly reduced in vivo tumor volume and prolonged median survival time in the xenograft mouse model. Conclusion: These results suggest that amlexanox sensitized primary glioma cell and U87 MG cell to TMZ at least partially though the suppression of IKBKE activation and the attenuation of AKT activation. Overall, combined treatment with TMZ and amlexanox may provide a promising possibility for improving the prognosis of glioblastoma patients in clinical practice.


2020 ◽  
Author(s):  
Jinbiao Xiong ◽  
Gaochao Guo ◽  
Lianmei Guo ◽  
Zengguang Wang ◽  
Zhijuan Chen ◽  
...  

Abstract Background: Temozolomide (TMZ), as the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM), often fails to improve the prognosis of GBM patients due to the quick development of resistance. The need for more effective management of GBM is urgent. The aim of this study is to evaluate the efficacy of combined therapy with TMZ and amlexanox, a selective inhibitor of inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE), for GBM. Methods: in vitro, cell viability assay, apoptosis analysis, western blot, migration and invasion assay were used. In vivo, intracranial tumor models were constructed and the immunohistochemistry were used. Results: We found that combined treatment resulted in significant induction of cellular apoptosis and the inhibition of cell viability, migration and invasion in primary glioma cell and in the human glioma cell line, U87 MG. TMZ enhanced expression of phosphoration of adenosine 5‘-monophosphate-activated protein kinase (p-AMPK) and amlexanox led to reduction of IKBKE, with no impact on p-AMPK. Furthermore, we demonstrated that, compared to other groups treated with each component alone, TMZ combined with amlexanox effectively inhibited phosphorylation of protein kinase B (AKT) and mammalian target of rapamycin (mTOR). In addition, the combination treatment also clearly reduced in vivo tumor volume and prolonged median survival time in the xenograft mouse model. Conclusion: These results suggest that amlexanox sensitized primary glioma cell and U87 MG cell to TMZ at least partially though the suppression of IKBKE activation and the attenuation of AKT activation. Overall, combined treatment with TMZ and amlexanox may provide a promising possibility for improving the prognosis of glioblastoma patients in clinical practice.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2750 ◽  
Author(s):  
Jitendra Shrestha ◽  
Sung Ki ◽  
Sang Shin ◽  
Seon Kim ◽  
Joo-Youn Lee ◽  
...  

FTY720 inhibits various cancers through PP2A activation. The structure of FTY720 is also used as a basic structure for the design of sphingosine kinase (SK) inhibitors. We have synthesized derivatives using an amide chain in FTY720 with a phenyl backbone, and then compounds were screened by an MTT cell viability assay. The PP2A activity of compound 7 was examined. The phosphorylation levels of AKT and ERK, downstream targets of PP2A, in the presence of compound 7, were determined. Compound 7 may exhibit anticancer effects through PP2A activation rather than the mechanism by inhibition of SK1 in cancer cells. In the docking study of compound 7 and PP2A, the amide chain of compound 7 showed an interaction with Asn61 that was different from FTY720, which is expected to affect the activity of the compound.


2021 ◽  
Author(s):  
Graham Anderson ◽  
Andrew McLeod ◽  
Pierre Bagnaninchi ◽  
Baljean Dhillon

The role of ultraviolet radiation (UVR) exposure in the pathology of age-related macular degeneration (AMD) has been debated for decades with epidemiological evidence failing to find a clear consensus for or against it playing a role. A key reason for this is a lack of foundational research into the response of living retinal tissue to UVR in regard to AMD-specific parameters of tissue function. We, therefore, explored the response of cultured retinal pigmented epithelium (RPE), the loss of which heralds advanced AMD, to specific wavelengths of UVR across the UV-B and UV-A bands found in natural sunlight. Using a bespoke in vitro UVR exposure apparatus coupled with bandpass filters we exposed the immortalised RPE cell line, ARPE-19, to 10nm bands of UVR between 290 and 405nm. Physical cell dynamics were assessed during exposure in cells cultured upon specialist electrode culture plates which allow for continuous, non-invasive electrostatic interrogation of key cell parameters during exposure such as monolayer coverage and tight-junction integrity. UVR exposures were also utilised to quantify wavelength-specific effects using a rapid cell viability assay and a phenotypic profiling assay which was leveraged to simultaneously quantify intracellular reactive oxygen species (ROS), nuclear morphology, mitochondrial stress, epithelial integrity and cell viability as part of a phenotypic profiling approach to quantifying the effects of UVR. Electrical impedance assessment revealed unforeseen detrimental effects of UV-A, beginning at 350nm, alongside previously demonstrated UV-B impacts. Cell viability analysis also highlighted increased effects at 350nm as well as 380nm. Effects at 350nm were further substantiated by high content image analysis which highlighted increased mitochondrial dysfunction and oxidative stress. We conclude that ARPE-19 cells exhibit a previously uncharacterised sensitivity to UV-A radiation, specifically at 350nm and somewhat less at 380nm. If upheld in vivo, such sensitivity will have impacts upon geoepidemiological risk scoring of AMD.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xianjun Sun ◽  
Wenhou Hou ◽  
Xin Liu ◽  
Jie Chai ◽  
Hongliang Guo ◽  
...  

Abstract Background Despite an enormous research effort, patients diagnosed with advanced colorectal cancer (CRC) still have low prognosis after surgical resection and chemotherapy. The major obstacle for CRC treatment is chemoresistance to front line anti-cancer drugs, such as 5-fluorouracil (5-FU) and oxaliplatin. However, the mechanism of chemoresistance to these drugs remains unclear. Methods Cell viability to 5-FU and oxaliplatin was measured by the CellTiter-Glo® 2.0 Cell Viability Assay. The endogenous REV7 protein in CRC cells was detected by western blotting. The translesion synthesis (TLS) events were measured by plasmid-based TLS efficiency assay. Cell apoptosis was evaluated by caspase3/7 activity assay. The in vivo tumor progression was analyzed by HT29 xenograft mice model. Results In this study, we found that expression of REV7, which is a key component of translesion synthesis (TLS) polymerase ζ (POL ζ), is significantly increased in both 5-FU and oxaliplatin resistant CRC cells. TLS efficiency analysis revealed that upregulated REV7 protein level results in enhanced TLS in response to 5-FU and oxaliplatin. Importantly, inhibition of REV7 by CRISPR/Cas9 knockout exhibited significant synergy with 5-FU and oxaliplatin in cell culture and murine xenograft model. Conclusion These results suggest that combination of REV7 deficiency and 5-FU or oxaliplatin has strong inhibitory effects on CRC cells and identified REV7 as a promising target for chemoresistant CRC treatment.


Blood ◽  
2014 ◽  
Vol 124 (12) ◽  
pp. 1915-1925 ◽  
Author(s):  
Jagadish Kummetha Venkata ◽  
Ningfei An ◽  
Robert Stuart ◽  
Luciano J. Costa ◽  
Houjian Cai ◽  
...  

Key Points SK2 is overexpressed in myeloma cells and contributes to myeloma cell survival and proliferation. SK2-specific inhibitor promotes proteasome degradation of Mcl-1 and c-Myc and inhibits myeloma growth in vitro and in vivo.


Pharmacology ◽  
2019 ◽  
Vol 104 (5-6) ◽  
pp. 312-319 ◽  
Author(s):  
Can Wei ◽  
Junfeng Jing ◽  
Yanbin Zhang ◽  
Ling Fang

Background: Wogonoside, an effective component of Scutellaria baicalensis extract, has recently become a hot topic for its newly discovered anticancer efficacy, but the underlying pharmacological mechanism is still unclear. In this study, we tested the inhibitory effects of wogonoside in human prostate cancer PC3 cells in vitro and vivo. Methods: The effects of wogonoside on cell viability, cycle progression, invasion, migration, and apoptosis were assessed in vitro. The levels of proteins in related signaling pathways were detected by western blotting assay. Finally, nude mouse tumorigenicity assay was conducted to detect the anticancer effect of wogonoside in vivo. Results: Wogonoside inhibited cell viability, invasive and migratory ability in a time- and dose-dependent manner. Flow cytometry indicated that wogonoside could induce cell apoptosis and S phase cell-cycle arrest. Mechanically, wogonoside suppressed the Wnt/β-catenin signaling pathway, and the level of p-glycogen synthase kinase-3β (GSK-3β; Ser9) was inhibited by wogonoside. The epithelial-mesenchymal transition (EMT) process was also reversed in PC3 cell line after wogonoside treatment. In vivo experiments showed that wogonoside inhibited tumor growth in xenograft mouse models. Conclusion: These findings revealed that wogonoside could suppress Wnt/β-catenin pathway and reversing the EMT process in PC3 cells. GSK-3β acts as a tumor suppressor in prostate cancer. Wogonoside may serve as an effective agent for treating prostate cancer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weiwei Shi ◽  
Ding Ma ◽  
Yin Cao ◽  
Lili Hu ◽  
Shuwen Liu ◽  
...  

BackgroundTriple-negative breast cancer (TNBC) features a poor prognosis, which is partially attributed to its high metastatic rate. However, there is no effective target for systemic TNBC therapy due to the absence of estrogen, progesterone, and human epidermal growth factor 2 receptors (ER, PR, and HER-2, respectively) in cancer. In the present study, we evaluated the role of sphingosine kinase 2 (SphK2) and its catalyst sphingosine-1-phosphate (S1P) in TNBC metastasis and the effect of the SphK2-specific inhibitor ABC294640 on TNBC metastasis.MethodsThe function of SphK2 and S1P in TNBC cell metastasis was evaluated using transwell migration and wound-healing assays. The molecular mechanism of SphK2/S1P mediating TNBC metastasis was investigated using Western blot, histological examination, and immunohistochemistry assays. The antitumor activity of ABC294640 was examined in an in vivo TNBC lung metastatic model.ResultsSphingosine kinase 2 promoted TNBC cell migration through the generation of S1P. Targeting SphK2 with ABC294640 inhibited TNBC lung metastasis in vivo. p21-activated kinase 1 (PAK1), p-Lin-11/Isl-1/Mec-3 kinase 1 (LIMK1), and Cofilin1 were the downstream signaling molecules of SphK2/S1P. Inhibition of PAK1 suppressed SphK2/S1P-induced TNBC cell migration.ConclusionSphingosine kinase 2/sphingosine-1-phosphate promotes TNBC metastasis through the activation of the PAK1/LIMK1/Cofilin1 signaling pathway. ABC294640 inhibits TNBC metastasis in vivo and could be developed as a novel agent for the clinical treatment of TNBC.


Sign in / Sign up

Export Citation Format

Share Document