scholarly journals Enhancing Robustness of Machine Learning Integration With Routine Laboratory Blood Tests to Predict Inpatient Mortality After Intracerebral Hemorrhage

2022 ◽  
Vol 12 ◽  
Author(s):  
Wei Chen ◽  
Xiangkui Li ◽  
Lu Ma ◽  
Dong Li

Objective: The accurate evaluation of outcomes at a personalized level in patients with intracerebral hemorrhage (ICH) is critical clinical implications. This study aims to evaluate how machine learning integrates with routine laboratory tests and electronic health records (EHRs) data to predict inpatient mortality after ICH.Methods: In this machine learning-based prognostic study, we included 1,835 consecutive patients with acute ICH between October 2010 and December 2018. The model building process incorporated five pre-implant ICH score variables (clinical features) and 13 out of 59 available routine laboratory parameters. We assessed model performance according to a range of learning metrics, such as the mean area under the receiver operating characteristic curve [AUROC]. We also used the Shapley additive explanation algorithm to explain the prediction model.Results: Machine learning models using laboratory data achieved AUROCs of 0.71–0.82 in a split-by-year development/testing scheme. The non-linear eXtreme Gradient Boosting model yielded the highest prediction accuracy. In the held-out validation set of development cohort, the predictive model using comprehensive clinical and laboratory parameters outperformed those using clinical alone in predicting in-hospital mortality (AUROC [95% bootstrap confidence interval], 0.899 [0.897–0.901] vs. 0.875 [0.872–0.877]; P <0.001), with over 81% accuracy, sensitivity, and specificity. We observed similar performance in the testing set.Conclusions: Machine learning integrated with routine laboratory tests and EHRs could significantly promote the accuracy of inpatient ICH mortality prediction. This multidimensional composite prediction strategy might become an intelligent assistive prediction for ICH risk reclassification and offer an example for precision medicine.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Agibetov ◽  
B Seirer ◽  
S Aschauer ◽  
D Dalos ◽  
R Rettl ◽  
...  

Abstract Background/Introduction Cardiac amyloidosis (CA) is a rare and complex condition with poor prognosis. Novel therapies have been shown to improve outcome, however, most of the affected individuals remain undiagnosed, mainly due to a lack in awareness among clinicians. One approach to overcome this issue is to use automated diagnostic algorithms that act based on routinely available laboratory results. Purpose We tested the performance of flexible machine learning and traditional statistical prediction models for non-invasive CA diagnosis based on routinely collected laboratory parameters. Since laboratory routines vary between hospitals or other health care providers, special attention has been taken to adaptive and dynamic parameter selection, and to dealing with the frequent occurrence of missing values. Methods Our cohort consisted of 376 clinically accepted patients with various types of heart failure. Of these, 69 were diagnosed with CA via endomyocardial biopsy (positives), and 307 had unrelated cardiac disorders (negatives). A total of 63 routine laboratory parameters were collected from these patients, with a high incidence of missing values (on average 60% of patients for each parameter). We tested the performance of two prediction models: logistic regression, and extreme gradient boosting with regression trees. To deal with missing values we adopted two strategies: a) finding an optimal overlap of parameters and deleting all patients with missing values (reduction of parameters and samples), and b) retaining all features and imputing missing values with parameter-wise means. To fairly assess the performance of prediction models we employed a 10-fold cross validation (stratified to preserve sample class ratio). Finally, area under curve for receiver-operator characteristic (ROC AUC) was used as our final performance measure. Results A complex machine learning model based on forests of regression trees proved to be the most performant (ROC AUC 0.94±4%) and robust to missing values. The best regression model was obtained with the 25 most frequent variables and patient deletion in case of missing values (ROC AUC 0.82±0.8%). While progressive inclusion of predictor variables worsened the performance of the logistic regression, it increased that of the machine learning approach. Conclusions Extreme gradient boosting of regression trees by routine laboratory parameters achieved staggering accuracy results for the automated diagnosis of CA. Our data suggest that implementations of such algorithms as independent interpreters of routine laboratory results may help to establish or suggest the diagnosis of CA in patients with heart failure symptoms, even in the absence of specialized experts.


JAMIA Open ◽  
2020 ◽  
Author(s):  
Liyan Pan ◽  
Guangjian Liu ◽  
Xiaojian Mao ◽  
Huiying Liang

Abstract Objective The study aimed to develop simplified diagnostic models for identifying girls with central precocious puberty (CPP), without the expensive and cumbersome gonadotropin-releasing hormone (GnRH) stimulation test, which is the gold standard for CPP diagnosis. Materials and methods Female patients who had secondary sexual characteristics before 8 years old and had taken a GnRH analog (GnRHa) stimulation test at a medical center in Guangzhou, China were enrolled. Data from clinical visiting, laboratory tests, and medical image examinations were collected. We first extracted features from unstructured data such as clinical reports and medical images. Then, models based on each single-source data or multisource data were developed with Extreme Gradient Boosting (XGBoost) classifier to classify patients as CPP or non-CPP. Results The best performance achieved an area under the curve (AUC) of 0.88 and Youden index of 0.64 in the model based on multisource data. The performance of single-source models based on data from basal laboratory tests and the feature importance of each variable showed that the basal hormone test had the highest diagnostic value for a CPP diagnosis. Conclusion We developed three simplified models that use easily accessed clinical data before the GnRH stimulation test to identify girls who are at high risk of CPP. These models are tailored to the needs of patients in different clinical settings. Machine learning technologies and multisource data fusion can help to make a better diagnosis than traditional methods.


2020 ◽  
Author(s):  
Juan L Domínguez-Olmedo ◽  
Álvaro Gragera-Martínez ◽  
Jacinto Mata ◽  
Victoria Pachón Álvarez

BACKGROUND The COVID-19 pandemic is probably the greatest health catastrophe of the modern era. Spain’s health care system has been exposed to uncontrollable numbers of patients over a short period, causing the system to collapse. Given that diagnosis is not immediate, and there is no effective treatment for COVID-19, other tools have had to be developed to identify patients at the risk of severe disease complications and thus optimize material and human resources in health care. There are no tools to identify patients who have a worse prognosis than others. OBJECTIVE This study aimed to process a sample of electronic health records of patients with COVID-19 in order to develop a machine learning model to predict the severity of infection and mortality from among clinical laboratory parameters. Early patient classification can help optimize material and human resources, and analysis of the most important features of the model could provide more detailed insights into the disease. METHODS After an initial performance evaluation based on a comparison with several other well-known methods, the extreme gradient boosting algorithm was selected as the predictive method for this study. In addition, Shapley Additive Explanations was used to analyze the importance of the features of the resulting model. RESULTS After data preprocessing, 1823 confirmed patients with COVID-19 and 32 predictor features were selected. On bootstrap validation, the extreme gradient boosting classifier yielded a value of 0.97 (95% CI 0.96-0.98) for the area under the receiver operator characteristic curve, 0.86 (95% CI 0.80-0.91) for the area under the precision-recall curve, 0.94 (95% CI 0.92-0.95) for accuracy, 0.77 (95% CI 0.72-0.83) for the F-score, 0.93 (95% CI 0.89-0.98) for sensitivity, and 0.91 (95% CI 0.86-0.96) for specificity. The 4 most relevant features for model prediction were lactate dehydrogenase activity, C-reactive protein levels, neutrophil counts, and urea levels. CONCLUSIONS Our predictive model yielded excellent results in the differentiating among patients who died of COVID-19, primarily from among laboratory parameter values. Analysis of the resulting model identified a set of features with the most significant impact on the prediction, thus relating them to a higher risk of mortality.


10.2196/26211 ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. e26211
Author(s):  
Juan L Domínguez-Olmedo ◽  
Álvaro Gragera-Martínez ◽  
Jacinto Mata ◽  
Victoria Pachón Álvarez

Background The COVID-19 pandemic is probably the greatest health catastrophe of the modern era. Spain’s health care system has been exposed to uncontrollable numbers of patients over a short period, causing the system to collapse. Given that diagnosis is not immediate, and there is no effective treatment for COVID-19, other tools have had to be developed to identify patients at the risk of severe disease complications and thus optimize material and human resources in health care. There are no tools to identify patients who have a worse prognosis than others. Objective This study aimed to process a sample of electronic health records of patients with COVID-19 in order to develop a machine learning model to predict the severity of infection and mortality from among clinical laboratory parameters. Early patient classification can help optimize material and human resources, and analysis of the most important features of the model could provide more detailed insights into the disease. Methods After an initial performance evaluation based on a comparison with several other well-known methods, the extreme gradient boosting algorithm was selected as the predictive method for this study. In addition, Shapley Additive Explanations was used to analyze the importance of the features of the resulting model. Results After data preprocessing, 1823 confirmed patients with COVID-19 and 32 predictor features were selected. On bootstrap validation, the extreme gradient boosting classifier yielded a value of 0.97 (95% CI 0.96-0.98) for the area under the receiver operator characteristic curve, 0.86 (95% CI 0.80-0.91) for the area under the precision-recall curve, 0.94 (95% CI 0.92-0.95) for accuracy, 0.77 (95% CI 0.72-0.83) for the F-score, 0.93 (95% CI 0.89-0.98) for sensitivity, and 0.91 (95% CI 0.86-0.96) for specificity. The 4 most relevant features for model prediction were lactate dehydrogenase activity, C-reactive protein levels, neutrophil counts, and urea levels. Conclusions Our predictive model yielded excellent results in the differentiating among patients who died of COVID-19, primarily from among laboratory parameter values. Analysis of the resulting model identified a set of features with the most significant impact on the prediction, thus relating them to a higher risk of mortality.


Author(s):  
Rocío Aznar-Gimeno ◽  
Luis M. Esteban ◽  
Gorka Labata-Lezaun ◽  
Rafael del-Hoyo-Alonso ◽  
David Abadia-Gallego ◽  
...  

The purpose of the study was to build a predictive model for estimating the risk of ICU admission or mortality among patients hospitalized with COVID-19 and provide a user-friendly tool to assist clinicians in the decision-making process. The study cohort comprised 3623 patients with confirmed COVID-19 who were hospitalized in the SALUD hospital network of Aragon (Spain), which includes 23 hospitals, between February 2020 and January 2021, a period that includes several pandemic waves. Up to 165 variables were analysed, including demographics, comorbidity, chronic drugs, vital signs, and laboratory data. To build the predictive models, different techniques and machine learning (ML) algorithms were explored: multilayer perceptron, random forest, and extreme gradient boosting (XGBoost). A reduction dimensionality procedure was used to minimize the features to 20, ensuring feasible use of the tool in practice. Our model was validated both internally and externally. We also assessed its calibration and provide an analysis of the optimal cut-off points depending on the metric to be optimized. The best performing algorithm was XGBoost. The final model achieved good discrimination for the external validation set (AUC = 0.821, 95% CI 0.787–0.854) and accurate calibration (slope = 1, intercept = −0.12). A cut-off of 0.4 provides a sensitivity and specificity of 0.71 and 0.78, respectively. In conclusion, we built a risk prediction model from a large amount of data from several pandemic waves, which had good calibration and discrimination ability. We also created a user-friendly web application that can aid rapid decision-making in clinical practice.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 203
Author(s):  
I-Jung Tsai ◽  
Wen-Chi Shen ◽  
Chia-Ling Lee ◽  
Horng-Dar Wang ◽  
Ching-Yu Lin

Bladder cancer has been increasing globally. Urinary cytology is considered a major screening method for bladder cancer, but it has poor sensitivity. This study aimed to utilize clinical laboratory data and machine learning methods to build predictive models of bladder cancer. A total of 1336 patients with cystitis, bladder cancer, kidney cancer, uterus cancer, and prostate cancer were enrolled in this study. Two-step feature selection combined with WEKA and forward selection was performed. Furthermore, five machine learning models, including decision tree, random forest, support vector machine, extreme gradient boosting (XGBoost), and light gradient boosting machine (GBM) were applied. Features, including calcium, alkaline phosphatase (ALP), albumin, urine ketone, urine occult blood, creatinine, alanine aminotransferase (ALT), and diabetes were selected. The lightGBM model obtained an accuracy of 84.8% to 86.9%, a sensitivity 84% to 87.8%, a specificity of 82.9% to 86.7%, and an area under the curve (AUC) of 0.88 to 0.92 in discriminating bladder cancer from cystitis and other cancers. Our study provides a demonstration of utilizing clinical laboratory data to predict bladder cancer.


2019 ◽  
Author(s):  
Kasper Van Mens ◽  
Joran Lokkerbol ◽  
Richard Janssen ◽  
Robert de Lange ◽  
Bea Tiemens

BACKGROUND It remains a challenge to predict which treatment will work for which patient in mental healthcare. OBJECTIVE In this study we compare machine algorithms to predict during treatment which patients will not benefit from brief mental health treatment and present trade-offs that must be considered before an algorithm can be used in clinical practice. METHODS Using an anonymized dataset containing routine outcome monitoring data from a mental healthcare organization in the Netherlands (n = 2,655), we applied three machine learning algorithms to predict treatment outcome. The algorithms were internally validated with cross-validation on a training sample (n = 1,860) and externally validated on an unseen test sample (n = 795). RESULTS The performance of the three algorithms did not significantly differ on the test set. With a default classification cut-off at 0.5 predicted probability, the extreme gradient boosting algorithm showed the highest positive predictive value (ppv) of 0.71(0.61 – 0.77) with a sensitivity of 0.35 (0.29 – 0.41) and area under the curve of 0.78. A trade-off can be made between ppv and sensitivity by choosing different cut-off probabilities. With a cut-off at 0.63, the ppv increased to 0.87 and the sensitivity dropped to 0.17. With a cut-off of at 0.38, the ppv decreased to 0.61 and the sensitivity increased to 0.57. CONCLUSIONS Machine learning can be used to predict treatment outcomes based on routine monitoring data.This allows practitioners to choose their own trade-off between being selective and more certain versus inclusive and less certain.


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


2021 ◽  
Vol 13 (6) ◽  
pp. 1147
Author(s):  
Xiangqian Li ◽  
Wenping Yuan ◽  
Wenjie Dong

To forecast the terrestrial carbon cycle and monitor food security, vegetation growth must be accurately predicted; however, current process-based ecosystem and crop-growth models are limited in their effectiveness. This study developed a machine learning model using the extreme gradient boosting method to predict vegetation growth throughout the growing season in China from 2001 to 2018. The model used satellite-derived vegetation data for the first month of each growing season, CO2 concentration, and several meteorological factors as data sources for the explanatory variables. Results showed that the model could reproduce the spatiotemporal distribution of vegetation growth as represented by the satellite-derived normalized difference vegetation index (NDVI). The predictive error for the growing season NDVI was less than 5% for more than 98% of vegetated areas in China; the model represented seasonal variations in NDVI well. The coefficient of determination (R2) between the monthly observed and predicted NDVI was 0.83, and more than 69% of vegetated areas had an R2 > 0.8. The effectiveness of the model was examined for a severe drought year (2009), and results showed that the model could reproduce the spatiotemporal distribution of NDVI even under extreme conditions. This model provides an alternative method for predicting vegetation growth and has great potential for monitoring vegetation dynamics and crop growth.


2020 ◽  
Vol 41 (S1) ◽  
pp. s521-s522
Author(s):  
Debarka Sengupta ◽  
Vaibhav Singh ◽  
Seema Singh ◽  
Dinesh Tewari ◽  
Mudit Kapoor ◽  
...  

Background: The rising trend of antibiotic resistance imposes a heavy burden on healthcare both clinically and economically (US$55 billion), with 23,000 estimated annual deaths in the United States as well as increased length of stay and morbidity. Machine-learning–based methods have, of late, been used for leveraging patient’s clinical history and demographic information to predict antimicrobial resistance. We developed a machine-learning model ensemble that maximizes the accuracy of such a drug-sensitivity versus resistivity classification system compared to the existing best-practice methods. Methods: We first performed a comprehensive analysis of the association between infecting bacterial species and patient factors, including patient demographics, comorbidities, and certain healthcare-specific features. We leveraged the predictable nature of these complex associations to infer patient-specific antibiotic sensitivities. Various base-learners, including k-NN (k-nearest neighbors) and gradient boosting machine (GBM), were used to train an ensemble model for confident prediction of antimicrobial susceptibilities. Base learner selection and model performance evaluation was performed carefully using a variety of standard metrics, namely accuracy, precision, recall, F1 score, and Cohen κ. Results: For validating the performance on MIMIC-III database harboring deidentified clinical data of 53,423 distinct patient admissions between 2001 and 2012, in the intensive care units (ICUs) of the Beth Israel Deaconess Medical Center in Boston, Massachusetts. From ~11,000 positive cultures, we used 4 major specimen types namely urine, sputum, blood, and pus swab for evaluation of the model performance. Figure 1 shows the receiver operating characteristic (ROC) curves obtained for bloodstream infection cases upon model building and prediction on 70:30 split of the data. We received area under the curve (AUC) values of 0.88, 0.92, 0.92, and 0.94 for urine, sputum, blood, and pus swab samples, respectively. Figure 2 shows the comparative performance of our proposed method as well as some off-the-shelf classification algorithms. Conclusions: Highly accurate, patient-specific predictive antibiogram (PSPA) data can aid clinicians significantly in antibiotic recommendation in ICU, thereby accelerating patient recovery and curbing antimicrobial resistance.Funding: This study was supported by Circle of Life Healthcare Pvt. Ltd.Disclosures: None


Sign in / Sign up

Export Citation Format

Share Document