scholarly journals Higher Right Hemisphere Gamma Band Lateralization and Suggestion of a Sensitive Period for Vocal Auditory Emotional Stimuli Recognition in Unilateral Cochlear Implant Children: An EEG Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Giulia Cartocci ◽  
Andrea Giorgi ◽  
Bianca M. S. Inguscio ◽  
Alessandro Scorpecci ◽  
Sara Giannantonio ◽  
...  

In deaf children, huge emphasis was given to language; however, emotional cues decoding and production appear of pivotal importance for communication capabilities. Concerning neurophysiological correlates of emotional processing, the gamma band activity appears a useful tool adopted for emotion classification and related to the conscious elaboration of emotions. Starting from these considerations, the following items have been investigated: (i) whether emotional auditory stimuli processing differs between normal-hearing (NH) children and children using a cochlear implant (CI), given the non-physiological development of the auditory system in the latter group; (ii) whether the age at CI surgery influences emotion recognition capabilities; and (iii) in light of the right hemisphere hypothesis for emotional processing, whether the CI side influences the processing of emotional cues in unilateral CI (UCI) children. To answer these matters, 9 UCI (9.47 ± 2.33 years old) and 10 NH (10.95 ± 2.11 years old) children were asked to recognize nonverbal vocalizations belonging to three emotional states: positive (achievement, amusement, contentment, relief), negative (anger, disgust, fear, sadness), and neutral (neutral, surprise). Results showed better performances in NH than UCI children in emotional states recognition. The UCI group showed increased gamma activity lateralization index (LI) (relative higher right hemisphere activity) in comparison to the NH group in response to emotional auditory cues. Moreover, LI gamma values were negatively correlated with the percentage of correct responses in emotion recognition. Such observations could be explained by a deficit in UCI children in engaging the left hemisphere for more demanding emotional task, or alternatively by a higher conscious elaboration in UCI than NH children. Additionally, for the UCI group, there was no difference between the CI side and the contralateral side in gamma activity, but a higher gamma activity in the right in comparison to the left hemisphere was found. Therefore, the CI side did not appear to influence the physiologic hemispheric lateralization of emotional processing. Finally, a negative correlation was shown between the age at the CI surgery and the percentage of correct responses in emotion recognition and then suggesting the occurrence of a sensitive period for CI surgery for best emotion recognition skills development.

2022 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Benjamin C. Gibson ◽  
Andrei Vakhtin ◽  
Vincent P. Clark ◽  
Christopher C. Abbott ◽  
Davin K. Quinn

Hemispheric differences in emotional processing have been observed for over half a century, leading to multiple theories classifying differing roles for the right and left hemisphere in emotional processing. Conventional acceptance of these theories has had lasting clinical implications for the treatment of mood disorders. The theory that the left hemisphere is broadly associated with positively valenced emotions, while the right hemisphere is broadly associated with negatively valenced emotions, drove the initial application of repetitive transcranial magnetic stimulation (rTMS) for the treatment of major depressive disorder (MDD). Subsequent rTMS research has led to improved response rates while adhering to the same initial paradigm of administering excitatory rTMS to the left prefrontal cortex (PFC) and inhibitory rTMS to the right PFC. However, accumulating evidence points to greater similarities in emotional regulation between the hemispheres than previously theorized, with potential implications for how rTMS for MDD may be delivered and optimized in the near future. This review will catalog the range of measurement modalities that have been used to explore and describe hemispheric differences, and highlight evidence that updates and advances knowledge of TMS targeting and parameter selection. Future directions for research are proposed that may advance precision medicine and improve efficacy of TMS for MDD.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


Author(s):  
Elizabeth Schechter

This chapter defends the 2-agents claim, according to which the two hemispheres of a split-brain subject are associated with distinct intentional agents. The empirical basis of this claim is that, while both hemispheres are the source or site of intentions, the capacity to integrate them in practical reasoning no longer operates interhemispherically after split-brain surgery. As a result, the right hemisphere-associated agent, R, and the left hemisphere-associated agent, L, enjoy intentional autonomy from each other. Although the positive case for the 2-agents claim is grounded mainly in experimental findings, the claim is not contradicted by what we know of split-brain subjects’ ordinary behavior, that is, the way they act outside of experimental conditions.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii44-ii44
Author(s):  
A T J van der Boog ◽  
S David ◽  
A M M Steennis ◽  
T J Snijders ◽  
J W Dankbaar ◽  
...  

Abstract BACKGROUND Surgical treatment of diffuse glioma is performed to reduce tumor mass effect and to pave the way for adjuvant (chemo)radiotherapy. As a complication of surgery, ischemic lesions are often found in the postoperative setting. Not only can these lesion induce neurological deficits, but their volume has also been associated with reduced survival time. Prior studies suggest areas with a singular vascular supply to be more prone to postoperative ischemic lesions, although the precise cause is yet unknown. The aim of this study was to explore the volumetric and spatial distributions of postoperative ischemic lesions and their relation to arterial territories in glioma patients. MATERIAL AND METHODS We accessed a retrospective database of 144 adult cases with WHO grade II-IV supratentorial gliomas, who received surgery and postoperative MRI within 3 days in 2012–2014. We identified 93 patients with postoperative ischemia, defined as new confluent diffusion restriction on DWI. Ischemic lesions were manually delineated and spatially normalized to stereotaxic MNI space. Voxel-based analysis (VBA) was performed to compare presence and absence of postoperative ischemia. False positive results were eliminated by family-wise error correction. Areas of ischemia were labeled using an arterial territory map, the Harvard-Oxford cortical and subcortical atlases and the XTRACT white matter atlas. RESULTS Median volume of confluent ischemia was 3.52cc (IQR 2.15–5.94). 23 cases had only ischemic lesion in the left hemisphere, 46 in the right hemisphere and 24 bilateral. Median volume was 3.08cc (IQR 1.35–5.72) in left-sided lesions and 2.47cc (1.01–4.24) in right-sided lesions. Volume of ischemic lesions was not associated with survival after 1, 2 or 5 years. A cluster of 125.18cc was found to be significantly associated with development of postoperative ischemia. 73% of this cluster was situated in the arterial territory of the right middle cerebral artery (MCA), limited by the border of the posterior cerebral artery (PCA), and the watershed area between the right MCA and the right anterior cerebral artery (ACA). Significant areas were located in the frontal lobes, spanning into the right temporo-occipital region, and predominantly included right and left thalamus, caudate nucleus, putamen, pallidum, as well as right temporal gyri and insular cortex, and parts of the right corticospinal tract, longitudinal fasciculi and superior thalamic radiation. CONCLUSION We found slightly more and larger ischemic lesions in the right than left hemisphere after glioma resection. A statistically significant cluster of voxels of postoperative ischemia was found in the territory of the right MCA and watershed area of the right ACA. Exploration of the spatial distribution of these lesions could help elucidate their etiology and form the basis for predicting clinically relevant postoperative ischemia.


Psihologija ◽  
2008 ◽  
Vol 41 (2) ◽  
pp. 195-211
Author(s):  
Jasmina Vuksanovic ◽  
Milena Djuric

Fluency tests are frequently used in clinical practice to asses executive functions. The literature data are not unequivocal although in a great number of papers is pointed out the importance of the left hemisphere, specially of the left frontal lobes in the mediation of phonological fluency and the right hemisphere in the mediation of nonverbal fluency. This paper considers the suitability of fluency tests for the detection of left versus right seizure laterality. The sample consisted of thirty-two epilepsy patients divided into two groups: LHF-participants with the seizure focus in the left hemisphere (n=16), and DHF-participants with the seizure focus in the right hemisphere (n=16), and K-the control group of t age-matched healthy children (n=50) aged 7-11 years. The qualitative and quantitative comparison of the phonological and nonverbal fluency performance was carried out in consideration of the seizure laterality as well as compared to the healthy controls. The results of phonological fluency performance revealed that the performance of the LHF group was significantly reduced as compared to both DHF and K group. The analysis of nonverbal fluency performance revealed that the performance of the DHF group was significantly reduced as compared to both LHF and K group The qualitative analysis obtained valuable data, which could additionally contribute to the neuropsychological evaluation of the left versus right seizure laterality.


2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.


Author(s):  
Rohitashwa Sinha ◽  
Aicha B C Dijkshoorn ◽  
Chao Li ◽  
Tom Manly ◽  
Stephen J Price

Abstract Patients with glioblastoma face abysmal overall survival, cognitive deficits, poor quality of life and limitations to social participation; partly attributable to surgery. Emotion recognition deficits mediated by pathophysiological mechanisms in the right inferior fronto-occipital fasciculus and right inferior longitudinal fasciculus have been demonstrated in traumatic brain injury and dementia, with negative associations for social participation. We hypothesise similar mechanisms occur in patients undergoing resection surgery for glioblastoma. Here, we apply tract-based spatial statistics using a combination of automated image registration methods alongside cognitive testing before and after surgery. In this prospective, longitudinal, observational study of 15 patients, surgery is associated with an increase of emotion recognition deficits (p = 0.009) and this is correlated with decreases in fractional anisotropy in the Inferior Longitudinal Fasciculus, Inferior Fronto-Occipital Fasciculus, Anterior Thalamic Radiation and Uncinate Fasciculus; all in the right hemisphere (p = 0.014). Methodologically, the combination of registration steps used demonstrate that tract-based spatial statistics can be applied in the context of large, scan distorting lesions such as glioblastoma. These results can inform clinical consultations with patients undergoing surgery, support consideration for social cognition rehabilitation and are consistent with theoretical mechanisms that implicate these tracts in emotion recognition deficits across different diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Selene Schintu ◽  
Elisa Martín-Arévalo ◽  
Michael Vesia ◽  
Yves Rossetti ◽  
Romeo Salemme ◽  
...  

Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA’s effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPAper se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1.


2021 ◽  
Vol 23 (2) ◽  
pp. 107-112
Author(s):  
Elena B. Filippova ◽  
Elena M. Lesova ◽  
Natalya V. Murgaeva

We researched the dependence of cognitive abilities, mostly connected to functions of right and left hemispheres, and physical endurance on phases of sexual cycle. We discovered that on the first day of the cycle the number of correct tasks, connected with functions of the right hemisphere, was bigger than in the middle of the cycle, while no difference was detected in tasks, connected with functions of the left hemisphere. In the beginning of the cycle all test subjects correctly answered more "right hemisphere" questions, than during the ovulation phase, in the middle of the cycle the majority of test subjects correctly answered more "left hemisphere" tasks. We assume that sexual steroids moderate functional differences, connected with functions of right and left hemisphere. Precisely, low level of sexual steroids in the beginning of the cycle helps to activate functions of the right hemisphere, while steroids concentration in the middle of the cycle stops those functions. The level of heartbeat under the physical load was bigger in the luteal phase than before the ovulation; with the increase of load the heartbeat decreased before the ovulation and increase in the luteal phase. We assume that increased content of estrogens before the ovulations lead to decrease in physical endurance, while the decrease of concentration of estrogens in the luteal phase increased this endurance. Therefore, influence of sexual steroids helps to activate functions, which characterize specific psychological and physical status of women sex, particularly verbal abilities, lower abilities for visual analysis, and lower physical endurance of women.


Sign in / Sign up

Export Citation Format

Share Document