scholarly journals CircRtn4 Acts as the Sponge of miR-24-3p to Promote Neurite Growth by Regulating CHD5

2021 ◽  
Vol 14 ◽  
Author(s):  
Yue Qi ◽  
Nana Ma ◽  
Xiaofan Chen ◽  
Yue Wang ◽  
Wei Zhang ◽  
...  

Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules. After derived from precursor mRNA back-splicing, circRNAs play important roles in many biological processes. Recently, it was shown that several circRNAs were enriched in the mammalian brain with unclear functions. The expression of circRtn4 in the mouse brain was increased with the differentiation of primary neurons. In our study, knockdown of circRtn4 inhibited neurite growth, while overexpression of circRtn4 significantly increased neurite length. By dual-luciferase reporter assay and RNA antisense purification assay, circRtn4 was identified as a miRNA sponge for miR-24-3p. Moreover, knockdown of miR-24-3p increased neurite length, while overexpression of miR-24-3p significantly inhibited neurite growth. Furthermore, CHD5 was confirmed to be a downstream target gene of miR-24-3p. And CHD5 silence counteracted the positive effect of circRtn4 overexpression on neurite growth. In conclusion, circRtn4 may act as the sponge for miR-24-3p to promote neurite growth by regulating CHD5.

2021 ◽  
Author(s):  
Tian Rong Zhang ◽  
WeiQiang Huang

Abstract Background Angiogenesis is an important factor in promoting vascular repair and a valuable process in the treatment of cardiovascular diseases. Circular RNAs (circRNAs) are widely expressed in eukaryotic cells and play an important role in the regulation of endothelial cells (ECs). In our study, bioinformatics analysis and real-time fluorescent PCR detection revealed that circRNA 0010928 (circ-0010928) is differentially expressed in human cardiac microvascular endothelial cells (HCMECs). Material & Methods We evaluated the role of circ-0010928 in HCMECs. Then, we can verify the function of circ-0010928 in HCMECs by cell counting kit-8 (CCK8), scratch test, transwell experiment, tube forming experiment, flow cytometry. Use dual luciferase experiment to detect the binding relationship between circ-0010928, miR-921 and LSM14A. Results Overexpression of circ-0010928 inhibited the proliferation, migration and tube formation of HCMECs under hypoxic conditions and promoted their apoptosis. In addition, dual luciferase reporter assays confirmed that circ-0010928 acted as a sponge of miR-921 and LSM14A as a downstream target gene of miR-921. Silencing miR-921 could also inhibit the proliferation, migration and tube formation of HCMECs and negatively regulate angiogenesis. Conclusion CircRNA-0010928 may inhibit the function of miRNA-921by combining with miRNA-921, and then miRNA-921 plays a role in regulating LSM14A, thereby regulating the state of angiogenesis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fei Pan ◽  
Dongqing Zhang ◽  
Na Li ◽  
Mei Liu

circRNAs (circular RNAs) are a family of noncoding RNAs and have diverse physiological and pathological functions. However, the functions and mechanisms of circRNAs in the development and progression of colorectal cancer (CRC) remain largely unknown. Here, we aimed to explore the functions and roles of circFAT1(e2) in CRC. qRT-PCR revealed that circFAT1(e2) in CRC tumor tissues was upregulated compared with that in adjacent normal tissues and was also upregulated in CRC cell lines. Small interfering RNAs (siRNAs) against circFAT1(e2) were used to decrease the expression of circFAT1(e2) in HCT116 and RKO cells in vitro. The roles of circFAT1(e2) in CRC cell metastasis and proliferation were then determined by transwell and CCK-8 assays. The results showed that circFAT1(e2) silencing markedly suppressed CRC growth. Moreover, we identified circFAT1(e2) as a promoter of CRC metastasis. Knockdown of circFAT1(e2) evidently reduced HCT116 and RKO cell migration and invasion. Furthermore, the regulatory relationship between circFAT1(e2) and its target miRNAs was verified by a luciferase reporter assay. We demonstrated that circFAT1(e2) could sponge miR-30e-5p, which regulated the expression level of integrin α6 (ITGA6), the downstream target gene of miR-30e-5p. Rescue assays demonstrated that knockdown of miR-30e-5p enhanced CRC proliferation and migration via ITGA6. Taken together, our results reveal the novel oncogenic roles of circFAT1(e2) in CRC through the miR-30e-5p/ITGA6 axis.


2020 ◽  
Vol 18 ◽  
pp. 205873922093456 ◽  
Author(s):  
Xiaoqiang Ren ◽  
Jingwei Cai ◽  
Yongheng Wang ◽  
Xingren Zhu ◽  
Jun Qian ◽  
...  

Introduction: Long noncoding RNA ADAMTS9-AS2 (lncRNA ADAMTS9-AS2) has critical function in tumor growth and drug resistance of various cancers. However, the role and mechanism of lncRNA ADAMTS9-AS2 in osteosarcoma (OS) is still unclear. Methods: The expression of lncRNA ADAMTS9-AS2 and MicroRNAs-130a-5p (miR-130a-5p) was detected by real-time polymerase chain reaction (RT-qPCR) experiment. In addition, we used the plasmids transfection to construct the lncRNA ADAMTS9-AS2 overexpressed OS cell lines. Subsequently, the cell proliferation ability and the sensitivity to paclitaxel (PTX) in OS cells upon up-regulating lncRNA ADAMTS9-AS2 expression were analyzed via CCK-8 assay, while Western blotting experiment was performed to detect the regulatory mechanism. Results: We found that lncRNA ADAMTS9-AS2 was down-regulated in OS tissues, and the OS patients with lncRNA ADAMTS9-AS2 downexprssion were usually accompanied with a poor prognosis. Subsequently, we discovered that up-regulation of lncRNA ADAMTS9-AS2 inhibited cell proliferation and increased the sensitivity to PTX in OS cells. Interestingly, the Western blot results showed that overexpression of lncRNA ADAMTS9-AS2 could lead to PTEN expression increased, with PI3K and p-AKT expression decreased, indicating that lncRNA ADAMTS9-AS2 could increase the OS cell sensitivity to PTX via regulating PTEN-PI3K/AKT pathway. Furthermore, we identified MicroRNAs-130a-5p (miR-130a-5p) as the downstream target gene of lncRNA ADAMTS9-AS2, which was further confirmed by the luciferase reporter assay. More importantly, our data revealed that miR-130a-5p mimics could partly reverse the influence on cell proliferation and drug sensitivity induced by lncRNA ADAMTS9-AS2 overexpression. Conclusion: LncRNA ADAMTS9-AS2 exerts its anti-carcinogenesis function by sponging miR-130a-5p, which might be a new therapeutic target for OS treatment.


2019 ◽  
Vol 78 (6) ◽  
pp. 826-836 ◽  
Author(s):  
Shuying Shen ◽  
Yizheng Wu ◽  
Junxin Chen ◽  
Ziang Xie ◽  
Kangmao Huang ◽  
...  

ObjectivesCircular RNAs (circRNA) expression aberration has been identified in various human diseases. In this study, we investigated whether circRNAs could act as competing endogenous RNAs to regulate the pathological process of osteoarthritis (OA).MethodsCircRNA deep sequencing was performed to the expression of circRNAs between OA and control cartilage tissues. The regulatory and functional role of CircSERPINE2 upregulation was examined in OA and was validated in vitro and in vivo, downstream target of CircSERPINE2 was explored. RNA pull down, a luciferase reporter assay, biotin-coupled microRNA capture and fluorescence in situ hybridisation were used to evaluate the interaction between CircSERPINE2 and miR-1271-5 p, as well as the target mRNA, E26 transformation-specific-related gene (ERG). The role and mechanism of CircSERPINE2 in OA was also explored in rabbit models.ResultsThe decreased expression of CircSERPINE2 in the OA cartilage tissues was directly associated with excessive apoptosis and imbalance between anabolic and catabolic factors of extracellular matrix (ECM). Mechanistically, CircSERPINE2 acted as a sponge of miR-1271-5 p and functioned in human chondrocytes (HCs) through targeting miR-1271-5 p and ERG. Intra-articular injection of adeno-associated virus-CircSERPINE2-wt alleviated OA in the rabbit model.ConclusionsOur results reveal an important role for a novel circRNA-CircSERPINE2 in OA progression. CircSERPINE2 overexpression could alleviate HCs apoptosis and promote anabolism of ECM through miR-1271-ERG pathway. It provides a potentially effective therapeutic strategy for OA progression.


2019 ◽  
Vol 26 (3) ◽  
pp. 265-277 ◽  
Author(s):  
Zhe Wang ◽  
Ke Ma ◽  
Steffie Pitts ◽  
Yulan Cheng ◽  
Xi Liu ◽  
...  

Circular RNAs (circRNAs) are a new class of RNA involved in multiple human malignancies. However, limited information exists regarding the involvement of circRNAs in gastric carcinoma (GC). Therefore, we sought to identify novel circRNAs, their functions and mechanisms in gastric carcinogenesis. We analyzed next-generation RNA sequencing data from GC tissues and cell lines, identifying 75,201 candidate circRNAs. Among these, we focused on one novel circRNA, circNF1 , which was upregulated in GC tissues and cell lines. Loss- and gain-of-function studies demonstrated that circNF1 significantly promotes cell proliferation. Furthermore, luciferase reporter assays showed that circNF1 binds to miR-16, thereby derepressing its downstream target mRNAs, MAP7 and AKT3. Targeted silencing or overexpression of circNF1 had no effect on levels of its linear RNA counterpart, NF1. Taken together, these results suggest that circNF1 acts as a novel oncogenic circRNA in GC by functioning as a miR-16 sponge.


Author(s):  
Tong Li ◽  
Jianguo Xu ◽  
Yi Liu

An increasing number of studies have indicated that circular RNAs (circRNAs) participate in the progression of numerous tumors. However, the functions of circRNAs in glioblastoma (GBM) remain largely unknown. In this study, we focused on a novel circRNA (hsa_circRFX3_003) that was spliced from RFX3, which we named circRFX3. We confirmed that the expression of circRFX3 was substantially increased in GBM cell lines and clinical GBM tissues. The results of a series of overexpression and knockdown assays indicated that circRFX3 could boost the proliferation, invasion, and migration of GBM cells. By performing dual-luciferase reporter gene and RNA pull-down assays, we verified that circRFX3 could sponge microRNA-587 (miR-587) to exercise its function as a competing endogenous RNA (ceRNA) in the development of GBM. In addition, PDIA3 was proven to be a downstream target of miR-587 and to regulate the Wnt/β-catenin pathway. In conclusion, circRFX3 could act as a cancer-promoting circRNA to boost the development of GBM and regulate the miR-587/PDIA3/β-catenin axis. This study might provide a novel target for the treatment of GBM with molecular therapy.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhi Zeng ◽  
Liangyu Fei ◽  
Juntao Yang ◽  
Jun Zuo ◽  
Zelin Huang ◽  
...  

Objective: Osteoporosis is caused by the dysregulation of bone homeostasis which is synergistically mediated by osteoclasts and osteoblasts. MiR-27a-3p is a key inhibitor of bone formation. Hence, unearthing the downstream target gene of miR-27a-3p is of great significance to understand the molecular mechanism of osteoporosis.Methods: Bioinformatics analysis was utilized to find the downstream target gene of miR-27a-3p, and dual-luciferase reporter assay was conducted to validate the interplay of miR-27a-3p and GLP1R. Besides, qRT-PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) were employed to verify the impact of miR-27a-3p on GLP1R expression and the differentiation, autophagy, and inflammatory response of MC3T3-E1 pre-osteoblasts.Results: Dual-luciferase assay validated that miR-27a-3p directly targeted GLP1R. Additionally, posttreatment of MC3T3-E1 cells with miR-27a-3p mimics resulted in a remarkable decrease in expression levels of GLP1R, cell differentiation marker gene, autophagy marker gene, and AMPK. These results indicated that miR-27a-3p targeted GLP1R to inhibit AMPK signal activation and pre-osteoblast differentiation and autophagy, while promoting the release of inflammatory factors.Conclusion: The miR-27a-3p/GLP1R regulatory axis in pre-osteoblasts contributes to understanding the molecular mechanism of osteoporosis.


2021 ◽  
pp. 096032712199191
Author(s):  
M Li ◽  
Y Wang ◽  
Q Zhao ◽  
W Ma ◽  
J Liu

Background: Nasopharyngeal carcinoma (NPC) is a malignant head and neck tumor arising in the nasopharynx. MicroRNAs (miRNAs) are elucidated to exert tumor-suppressing function in human cancers. Numerous studies have manifested that miR-30a-5p serves as an anti-oncogene in various cancers. Objective: To research the biological function and molecular mechanism of miR-30a-5p in NPC. Methods: The morphology of NPC tissues was revealed by H&E staining. Transwell and wound healing assays were applied to investigate the effects of miR-30a-5p on NPC cell migration. The binding interaction between miR-30a-5p and nucleobindin 2 (NUCB2) was identified by luciferase reporter assay. Xenograft nude mice were used to detect the influence of miR-30a-5p on NPC tumor growth. Results: MiR-30a-5p was downregulated in NPC tissues and cells. The overexpression ofmiR-30a-5p inhibited proliferation, migration and invasion abilities of NPC cells. Moreover, NUCB2 was revealed to be a downstream target gene of miR-30a-5p, and knockdown of NUCB2 repressed the malignant behaviors of NPC cells and tumor growth. Additionally, rescue experiments revealed that miR-30a-5p suppressed the proliferation, migration and invasion of NPC cells via targeting NUCB2 in vitro. Meanwhile, in vivo assays depicted that NUCB2 overexpression rescued the effects induced by miR-30a-5p upregulation on tumor growth. Conclusion: MiR-30a-5p modulates NPC progression by targeting NUCB2. These findings lay a foundation for exploring the clinical treatment of NPC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Yin ◽  
Fuyi Tong ◽  
Yulan Ye ◽  
Tong Hu ◽  
Lijuan Xu ◽  
...  

Circular RNAs (circRNAs) play important roles in the pathogenesis of Crohn’s disease (CD). We discovered that hsa_circRNA_103124 was upregulated in CD patients in our previous study. Nonetheless, the function of hsa_circRNA_103124 is unclear. In this study, hsa_circRNA_103124 was predicted to interact with hsa-miR-650. Gene Ontology (GO) and pathway analyses identified AKT serine/threonine kinase 2 (AKT2) as the downstream target protein of hsa-miR-650. Activated AKT2 inhibits autophagy, but promotes cell proliferation. Recent studies suggest that the inhibition of autophagy is one of the mechanisms of CD pathogenesis. Therefore, we inferred that hsa_circRNA_103124 might regulate autophagy and proliferation by targeting AKT2 as a sponge for hsa-miR-650. Here, quantitative reverse transcription PCR (RT-QPCR) results revealed that upregulated hsa_circRNA_103124 expression in patients with CD was negatively correlated with hsa-miR-650 expression but positively correlated with the white blood cell count and calprotectin levels. TSC complex subunit 1 (TSC1), one of the proteins upstream of autophagy was downregulated in patients with CD. Consisting with the bioinformatics prediction, it was verified that hsa_circRNA_103124 targeted to hsa-miR650 by fluorescence in situ hybridization (FISH) and luciferase reporter assays. A hsa-miR-650 inhibitor reversed the promotion of rapamycin-induced autophagy and the inhibition of cell proliferation by the hsa_circRNA_103124 siRNA. However, hsa-miR-650 mimics reversed the inhibition of rapamycin-induced autophagy and the promotion of cell proliferation through hsa_circRNA_103124 overexpression. These results indicate that hsa_circRNA_103124 upregulation in patients with CD promotes cell proliferation and inhibits autophagy by regulating the hsa-miR-650/AKT2 signaling pathway.


2018 ◽  
Author(s):  
Akira Gokoolparsadh ◽  
Firoz Anwar ◽  
Irina Voineagu

ABSTRACTCircular RNAs (circRNAs) are enriched in the mammalian brain and are upregulated in response to neuronal differentiation and depolarisation. These RNA molecules, formed by non-canonical back-splicing, have both regulatory and translational potential. Here, we carried out an extensive characterisation of circRNA expression in the human brain, in nearly two hundred human brain samples, from both healthy individuals and autism cases. We identify hundreds of novel circRNAs and demonstrate that circRNAs are not expressed stochastically, but rather as major isoforms. We characterise inter-individual variability of circRNA expression in the human brain and show that inter-individual variability is less pronounced than variability between cerebral cortex and cerebellum. We also find that circRNA expression is dynamic during cellular maturation in brain organoids, but remains largely stable across the adult lifespan. Finally, we identify a circRNA co-expression module upregulated in autism samples, thereby adding another layer of complexity to the transcriptome changes observed in autism brain. These data provide a comprehensive catalogue of circRNAs as well as a deeper insight into their expression in the human brain, and are available as a free resource in browsable format at: http://www.voineagulab.unsw.edu.au/circ_rna


Sign in / Sign up

Export Citation Format

Share Document