scholarly journals Thalamostriatal System Controls the Acquisition, Performance, and Flexibility of Learning Behavior

2021 ◽  
Vol 15 ◽  
Author(s):  
Shigeki Kato ◽  
Kayo Nishizawa ◽  
Kazuto Kobayashi

The dorsal striatum (DS) is a key structure of the basal ganglia circuitry, which regulates various types of learning processes and flexible switching of behavior. Intralaminar thalamic nuclei (ILNs) provide the main source of thalamostriatal inputs to the DS and constitute multiple nuclear groups, each of which innervates specific subdivisions of the striatum. Although the anatomical and electrophysiological properties of thalamostriatal neurons have been previously characterized, the behavioral and physiological functions of these neurons remain unclarified. Two representative thalamostriatal cell groups in the parafascicular nucleus (PF) and the central lateral nucleus (CL) are located in the caudal and rostral regions of the ILNs in rodents. Recently, the behavioral roles of these thalamostriatal cell groups have been investigated by the use of genetic and pharmacological manipulation techniques. In the current review, we summarize behavioral studies on thalamostriatal neurons, showing the key roles of these neurons in different learning processes, such as the acquisition, performance, and flexibility of behavior.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Javier Alegre-Cortés ◽  
María Sáez ◽  
Roberto Montanari ◽  
Ramon Reig

Behavioral studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioral-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S91-S91
Author(s):  
Mihai Avram ◽  
Felix Brandl ◽  
Franziska Knolle ◽  
Jorge Cabello ◽  
Claudia Leucht ◽  
...  

Abstract Background In schizophrenia, among the most consistent brain changes are both aberrant dopamine function in the dorsal striatum and aberrant intrinsic functional connectivity (iFC) between distinct cortical networks and thalamic nuclei; however, it is unknown whether these changes are pathophysiologically related. Such a relationship is expected because cortico-thalamic-connectivity is modulated by striatal dopamine within topographically distinct, parallel but interacting cortico-basal-ganglia-thalamic circuits. We hypothesized: (1) Within-circuits, aberrant striatal dopamine contributes to aberrant cortico-thalamic-iFC, specifically, associative-striatum dopamine contributes to salience-network-thalamic-iFC, and sensorimotor-striatum dopamine to auditory-sensorimotor-network-thalamic-iFC. (2) Due to between-circuits interactions following an anterior-to-posterior gradient, salience-network-centered-system changes contribute to auditory-sensorimotor-network-centered-system changes. Methods To test these hypotheses, 19 patients with schizophrenia during symptomatic remission of positive symptoms and 19 age- and sex-comparable controls underwent simultaneous fluorodihydroxyphenyl-L-alanine positron emission tomography (18F-DOPA-PET) and resting-state functional magnetic resonance imaging (rs-fMRI). The influx constant kicer based on 18F-DOPA-PET was used to measure dopamine synthesis capacity (DSC), indicating striatal dopamine function; correlation coefficients between rs-fMRI time-series of cortical networks and thalamic regions-of-interest were used to measure iFC. Results In the salience-network(SAL)-centered-system, patients had reduced associative-striatum-DSC, which correlated positively with SAL-mediodorsal-thalamus-iFC and mediated the reduction of SAL-thalamic-iFC in patients. In the auditory-sensorimotor-network(ASM)-centered-system, patients had reduced sensorimotor-striatum-DSC, which correlated positively with ASM-ventrolateral-thalamus-iFC, but did not mediate increased ASM-thalamic-iFC in patients. Finally, aberrant DSC and iFC of the SAL-centered-system mediated corresponding changes in the ASM-centered-system. Discussion Results demonstrate that cortico-thalamic-dysconnectivity links with aberrant striatal dopamine in schizophrenia - in a topographically distinct way, with an anterior-to-posterior gradient, and primary changes in the SAL-centered system.


2003 ◽  
Vol 89 (3) ◽  
pp. 1402-1413 ◽  
Author(s):  
Youssouf Cissé ◽  
François Grenier ◽  
Igor Timofeev ◽  
Mircea Steriade

Intracellular recordings from association cortical areas 5 and 7 were performed in cats under barbiturate or ketamine-xylazine anesthesia to investigate the activities of different classes of neurons involved in callosal pathways, which were electrophysiologically characterized by depolarizing current steps. Excitatory postsynaptic potentials (EPSPs), inhibitory postsynaptic potentials (IPSPs), and/or antidromic responses were elicited by stimulating homotopic sites in the contralateral cortical areas. Differential features of EPSPs related to latencies, amplitudes, and slopes were detected in closely located (50 μm or less) neurons recorded in succession along the same electrode track. In contrast to synchronous thalamocortical volleys that excited most neurons within a cortical column, stimuli applied to homotopic sites in the contralateral cortex activated neurons at restricted cortical depths. Median latencies of callosally evoked EPSPs were 1.5 to 4 ms in various cortical cell-classes. Fast-rhythmic-bursting neurons displayed EPSPs whose amplitudes were threefold larger, and latencies two- or threefold shorter, than those found in the three other cellular classes. Converging callosal and thalamic inputs were recorded in the same cortical neuron. EPSPs or IPSPs were elicited by stimulating foci spaced by <1 mm in the contralateral cortex. In the overwhelming majority of neurons, latencies of antidromic responses were between 1.2 and 3.1 ms; however, some callosal neurons had much longer latencies, ≤18.5 ms. Some neurons were excited monosynaptically through the callosal pathway and identified antidromically from appropriate thalamic nuclei, thus revealing a callosal-corticothalamic pathway. Data are discussed in relation to the commissural spread of fast and slow normal oscillations as well as paroxysmal activities.


2005 ◽  
Vol 93 (1) ◽  
pp. 614-619 ◽  
Author(s):  
Ikuo Tanibuchi ◽  
Patricia S. Goldman-Rakic

We previously reported that neurons in the mediodorsal thalamic nucleus (MD) are topographically organized and express spatial and nonspatial coding properties similar to those of the prefrontal areas with which they are connected. In the course of mapping the dorsal thalamus, we also studied neurons in a subset of thalamic nuclei (the caudal part of the ventral lateral nucleus (VLc), the oral part of the ventral posterior lateral nucleus (VPLo), the parvocellular part of the ventral anterior nucleus (VApc)) lateral to the MD and just across the internal medullary lamina. We compared these “paralaminar” neurons to MD neurons by having monkeys perform the same spatial and nonspatial cognitive tasks as those used to investigate the MD; these included two saccadic tasks—one requiring delayed and the other immediate responses—and one picture fixation task. Of the paralaminar thalamic neurons modulated by the saccadic tasks, a majority had saccade-related activity, and this was nearly always spatially tuned. Also, for about half of these neurons, the saccade-related activity occurred exclusively during the delayed-response task. No neurons with event-related activity in the saccadic tasks were preferentially modulated by specific picture stimuli, although other neurons were. All of these results were similar to what we had found for MD neurons. However, in contrast to the high proportion of presaccadic responses observed in the MD, the majority of saccade-related neurons in paralaminar thalamus exhibited mid- or postsaccadic activity, i.e., that started during or after the saccade. Our findings suggest that neurons in the paralaminar thalamus may be possible conduits of oculomotor feedback signals, especially during memory-guided saccades.


2021 ◽  
Author(s):  
Hu Zhou ◽  
Jingxin Zhang ◽  
Huaxiang Shi ◽  
Pengfei Li ◽  
Xin Sui ◽  
...  

Abstract Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment as well as in Parkinson’s disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) acts negatively on dopamine (DA) signaling in the striatum, suggesting a critical role in circadian and sleep disorders. Here, we used CRISPR/Cas9 gene editing to produce dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene in mice (referred to as DS-CDK5-KD mice) to investigate its role in vivo. DS-CDK5-KD mice exhibited deficits in locomotor activity and disturbances in daily rest/activity cycles. Additionally, Golgi staining of neurons in the DS revealed that Cdk5 deletion caused a reduction in dendrite length and functional synapses, which was confirmed by significant downregulation of MAP2, PSD95 and synapsin I. Correlated with this, DS-CDK5-KD mice displayed reduced phosphorylation of Tau at Thr181. Furthermore, whole-cell patch-clamp recordings of green fluorescent protein (GFP)-tagged neurons in the striatum of DS-CDK5-KD mice revealed a decrease in the frequency of spontaneous inhibitory post-synaptic currents and an alteration of the excitatory/inhibitory synaptic balance. Notably, anterograde labeling showed that CDK5 knockdown in the DS disrupted long-range projections to the secondary motor cortex, dorsal and ventral thalamic nuclei, and the basolateral amygdala, which are involved in the regulation of motor and circadian rhythms in the brain. These findings support a critical role of CDK5 in the DS in maintaining the striatal neural circuitry underlying motor and circadian rhythms related to PD.


Nature ◽  
2021 ◽  
Vol 598 (7879) ◽  
pp. 188-194
Author(s):  
Nicholas N. Foster ◽  
Joshua Barry ◽  
Laura Korobkova ◽  
Luis Garcia ◽  
Lei Gao ◽  
...  

AbstractThe cortico–basal ganglia–thalamo–cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1–4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico–basal ganglia–thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico–basal ganglia–thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


2020 ◽  
Vol 10 (12) ◽  
pp. 1002
Author(s):  
Jesús Pastor ◽  
Lorena Vega-Zelaya

Our objective was to describe the electrophysiological properties of the extracellular action potential (AP) picked up through microelectrode recordings (MERs). Five patients were operated under general anesthesia for centromedian deep brain stimulation (DBS). APs from the same cell were pooled to obtain a mean AP (mAP). The amplitudes and durations for all 2/3 phases were computed from the mAP, together with the maximum (dVmax) and minimum (dVmin) values of the first derivative, as well as the slopes of different phases during repolarization. The mAPs are denominated according to the phase polarity (P/N for positive/negative). We obtained a total of 1109 mAPs, most of the positive (98.47%) and triphasic (93.69%) with a small P/N deflection (Vphase1) before depolarization. The percentage of the different types of mAPs was different for the nuclei addressed. The relationship between dVmax and the depolarizing phase is specific. The descending phase of the first derivative identified different phases during the repolarizing period. We observed a high correlation between Vphase1 and the amplitudes of either depolarization or repolarization phases. Human thalamic nuclei differ in their electrophysiological properties of APs, even under general anesthesia. Capacitive current, which is probably responsible for Vphase1, is very common in thalamic APs. Moreover, subtle differences during repolarization are neuron-specific.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Min Shi ◽  
Anrong Wang ◽  
Yu Fang ◽  
Jun Guo ◽  
Zhaoying Li ◽  
...  

Abstract Background We examined for the first time the imaging characteristics of Holmes tremor (HT) through multimodal 3D medical imaging. Case presentation Three patients with Holmes tremor who visited the Affiliated Hospital of Chengdu University of TCM from August 2018 to April 2021 were retrospectively investigated to summarize their clinical and imaging data. Results Holmes tremor in two of the three patients was caused by hypertensive cerebral hemorrhage and in the third patient induced by hemorrhage due to ruptured brain arteriovenous malformations. HT occurred 1 to 24 months after the primary disease onset and manifested as a tremor in the contralateral limb, mostly in the upper portion. Cranial MRI showed that the lesions involved the thalamus in all three patients. The damaged thalamic nuclei included the ventral anterior nucleus, ventral lateral nucleus and ventromedial lateral nucleus, and the damaged nerve fibers included left thalamocortical tracts in one patient. In the other two patients, the damaged thalamic nuclei included the centromedian and dorsomedial nucleus, and the damaged nerve fibers included left cerebellothalamic and thalamocortical tracts. One patient showed significant improvement after treatment with pramipexole while the other two patients exhibited a poor response, one of whom had no response to the treatment with pramipexole and was only significantly relieved by clonazepam. Conclusion We used multimodal 3D medical imaging for the first time to analyze the pathogenesis of HT and found that multiple thalamic nuclei were damaged. The damaged nuclei and nerve fiber tracts of two patients were different from those of the third patient, with different clinical manifestations and therapeutic effects. Therefore, it is speculated that there may be multiple pathogeneses for HT.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Solal Bloch ◽  
Hanako Hagio ◽  
Manon Thomas ◽  
Aurélie Heuzé ◽  
Jean-Michel Hermel ◽  
...  

Ascending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homology is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a thalamic-like sensory structure of teleosts, the preglomerular complex (PG), focusing on the visual projection neurons. Similarly to the tectofugal thalamic nuclei in amniotes, the lateral nucleus of PG receives tectal information and projects to the pallium. However, our cell lineage study in zebrafish reveals that the majority of PG cells are derived from the midbrain, unlike the amniote thalamus. We also demonstrate that the PG projection neurons develop gradually until late juvenile stages. Our data suggest that teleost PG, as a whole, is not homologous to the amniote thalamus. Thus, the thalamocortical-like projections evolved from a non-forebrain cell population, which indicates a surprising degree of variation in the vertebrate sensory systems.


2020 ◽  
Author(s):  
Nicholas N. Foster ◽  
Laura Korobkova ◽  
Luis Garcia ◽  
Lei Gao ◽  
Marlene Becerra ◽  
...  

ABSTRACTThe cortico-basal ganglia-thalamic loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behavior, and the natural history of many neurological and neuropsychiatric diseases. Classically, the basal ganglia is conceptualized to contain three primary information output channels: motor, limbic, and associative. However, given the roughly 65 cortical areas and two dozen thalamic nuclei that feed into the dorsal striatum, a three-channel view is overly simplistic for explaining the myriad functions of the basal ganglia. Recent works from our lab and others have subdivided the dorsal striatum into numerous functional domains based on convergent and divergent inputs from the cortex and thalamus. To complete this work, we generated a comprehensive data pool of ∼700 injections placed across the striatum, external globus pallidus (GPe), substantia nigra pars reticulata (SNr), thalamic nuclei, and cortex. We identify 14 domains of SNr, 36 in the GPe, and 6 in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify 6 parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information with complex patterns of convergence and divergence through every elemental node of the entire cortico-basal ganglia loop. These experiments reveal multiple important novel features of the cortico-basal ganglia network motif. The prototypical sub-network structure is characterized by a highly interconnected nature, with cortical information processing through one or more striatal nodes, which send a convergent output to the SNr and a more parallelized output to the GPe; the GPe output then converges with the SNr. A domain of the thalamus receives the nigral output, and is interconnected with both the striatal domains and the cortical areas that filter into its nigral input source. This study provides conceptual advancement of our understanding of the structural and functional organization of the classic cortico-basal ganglia network.


Sign in / Sign up

Export Citation Format

Share Document