scholarly journals Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products

2020 ◽  
Vol 7 ◽  
Author(s):  
Mojtaba Yousefi ◽  
Nasim Khorshidian ◽  
Hedayat Hosseini

One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.

2020 ◽  
Vol 26 (5) ◽  
pp. 519-541 ◽  
Author(s):  
Giovanna Ferrentino ◽  
Ksenia Morozova ◽  
Christine Horn ◽  
Matteo Scampicchio

Background: The use of essential oils is receiving increasing attention worldwide, as these oils are good sources of several bioactive compounds. Nowadays essential oils are preferred over synthetic preservatives thanks to their antioxidant and antimicrobial properties. Several studies highlight the beneficial effect of essential oils extracted from medicinal plants to cure human diseases such as hypertension, diabetes, or obesity. However, to preserve their bioactivity, the use of appropriate extraction technologies is required. Method: The present review aims to describe the studies published so far on the essential oils focusing on their sources and chemical composition, the technologies used for their recovery and their application as antioxidants in food products. Results: The review has been structured in three parts. In the first part, the main compounds present in essential oils extracted from medicinal plants have been listed and described. In the second part, the most important technologies used for extraction and distillation, have been presented. In detail, conventional methods have been described and compared with innovative and green technologies. Finally, in the last part, the studies related to the application of essential oils as antioxidants in food products have been reviewed and the main findings discussed in detail. Conclusions: In summary, an overview of the aforementioned subjects is presented by discussing the results of the most recent published studies.


2022 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Mohammadreza Pajohi Alamoti ◽  
Behnaz Bazargani-Gilani ◽  
Razzagh Mahmoudi ◽  
Anna Reale ◽  
Babak Pakbin ◽  
...  

Aim of this study was to investigate the antimicrobial properties of herbal plant essential oils (EOs) from selected Iranian plant species such as Ferulago angulata, Zataria multiflora, Cuminum cyminum, and Mentha longifolia against antibiotic-resistant Escherichia coli (E. coli) strains. For this purpose, the Escherichia coli strains, isolated from raw cow’s milk and local dairy products (yogurt, cream, whey, cheese, and confectionery products) collected from different areas of Hamedan province, Iran, were investigated for their resistance to antibiotics (i.e., streptomycin, tetracycline, gentamicin, chloramphenicol, ciprofloxacin, and cefixime). Thus, the E. coli strains were tested for their susceptibility to the above-mentioned essential oils. Regarding antibiotics, the E. coli strains were highly sensitive to ciprofloxacin. In relation to essential oils, the most effective antibacterial activity was observed with Zataria multiflora; also, the bacteria were semi-sensitive to Cuminum cyminum and Mentha longifolia essential oils. All strains were resistant to Ferulago angulata essential oil. According to the results, the essential oil of Zataria multiflora can be considered as a practical and alternative antibacterial strategy to inhibit the growth of multidrug-resistant E. coli of dairy origin.


2017 ◽  
Vol 36 (1) ◽  
pp. 1
Author(s):  
Aniswatul Khamidah ◽  
Sri Satya Antarlina ◽  
Tri Sudaryono

<p>Temulawak or javanese ginger (Curcuma xanthorrihza Roxb) is a rhizome herb that has medical benefits for increasing appetite and as an anticholesterol, antiinflammatory, antianemia, antioxidant and antimicrobe. Curcuminoid, a yellow substance in temulawak, has many health benefits. Besides for medicine, temulawak is used for food industry material mainly as natural dyes in food. The main components of temulawak are starch (41.45%) and fiber (12.62%). Temulawak also contains essential oils (3.81%) and curcumin (2.29%). Temulawak can be processed into various food products such us dried chips/simplicia (for steeping herbs), flour, instant drink, cookies, sweets, noodles, crackers, stick, cake, dodol and jelly candy. This paper describes composition, benefits, post-harvest handling and a variety of food products of temulawak.</p><p>Keywords: Javanese ginger, benefits, food product, food diversification</p><p align="center"><strong><br /></strong></p><p align="center"><strong>ABSTRAK</strong><strong></strong></p><p>Temulawak (<em>Curcuma xanthorrihza</em> Roxb) termasuk golongan tanaman rempah yang memiliki manfaat untuk meningkatkan nafsu makan dan sebagai antikolesterol, antiinflamasi, antianemia, antioksidan, dan antimikroba. Kurkuminoid sebagai zat utama yang berwarna kuning dalam temulawak diketahui memiliki banyak manfaat bagi kesehatan. Selain digunakan untuk pengobatan, temulawak berpeluang dikembangkan dalam industri pangan, terutama sebagai pewarna alami dalam makanan. Komponen terbesar dalam temulawak adalah pati 41,45% dan serat 12,62%. Temulawak juga mengandung minyak atsiri 3,81% dan kurkumin 2,29%. Temulawak dapat dikembangkan menjadi berbagai produk olahan pangan, antara lain simplisia, tepung, pati, minuman instan, kue kering, manisan, mi, kerupuk, stek, cake, dodol, dan permen jeli. Makalah ini memaparkan kandungan rimpang temulawak, manfaat, penanganan pascapanen, dan berbagai produk olahan temulawak.</p><p>Kata kunci: temulawak, manfaat, produk olahan, keanekaragaman pangan</p><p> </p>


2021 ◽  
Author(s):  
S M Nazmuz Sakib

Consumers' demand, perception, and preference for high quality, safe food, and awareness of health hazards of synthetic and chemical preservatives have attracted the food processors, food technologist's and industries to develop innovative techniques with the incorporation of natural components and minimal processing. Developing and utilizing the active edible coatings for shelf stability of the semi-perishable foods is one of these new innovative techniques. That's why the present study is planned to develop active edible coating using clove and peppermint essential oils as active ingredients and whey powder as the base material. Essential oils of peppermint and clove possess the antioxidant and antimicrobial properties. It is supposed that these properties of essential oils may enhance the safety, quality, and shelf stability of the cheese during storage. Soft cheese will be prepared, and these coatings will be applied to it. Then products will be stored at 4 and 25 ℃ for 15 days and will be analyzed every 3rd day for various safety, quality, and shelf stability attributes. All the obtained data will be statically analyzed to check the level of significance of these coatings.


2020 ◽  
Vol 8 (11) ◽  
pp. 1764
Author(s):  
Iwona Kawacka ◽  
Agnieszka Olejnik-Schmidt ◽  
Marcin Schmidt ◽  
Anna Sip

Providing safe products and compliance of legal requirements is still a great challenge for food manufacturers regarding microbiological safety, especially in the context of Listeria monocytogenes food contamination. L. monocytogenes is a human pathogen, which, due to the ability of survival and proliferation in preservation conditions such as high salinity, acidity and refrigeration temperatures, is a significant threat to the food industry. Novel methods of elimination of the bacterial pathogen in food products and food processing environments are required. Among emerging technologies, one of the very promising solutions is using bacteriophages as natural control agents. This review focus on the major aspects of phage-based inhibition of L. monocytogenes in aspects of food safety. We describe an overview of foods and technological factors influencing the efficacy of phage use in biocontrol of L. monocytogenes. The most noteworthy are food matrix properties, phage concentration and stability, the time of phage application and product storage temperature. The combined methods, phage immobilization (active packing), pathogen resistance to phages and legislation aspects of antilisterial bacteriophage use in the food industry are also discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Mallappa Kumara Swamy ◽  
Mohd Sayeed Akhtar ◽  
Uma Rani Sinniah

A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.


2006 ◽  
Vol 54 (24) ◽  
pp. 9262-9267 ◽  
Author(s):  
Maria A. Rojas-Graü ◽  
Roberto J. Avena-Bustillos ◽  
Mendel Friedman ◽  
Philip R. Henika ◽  
Olga Martín-Belloso ◽  
...  

Resources ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Maria Carpena ◽  
Bernabe Nuñez-Estevez ◽  
Anton Soria-Lopez ◽  
Paula Garcia-Oliveira ◽  
Miguel A. Prieto

The food industry is continuously evolving through the application of innovative tools and ingredients towards more effective, safe, natural and ecofriendly solutions to satisfy the demands of the costumers. In this context, natural sources (i.e., leaves, seeds, peels or unused pulp) can entail a valuable source of compounds, such as essential oils (EOs), with recognized antioxidant and antimicrobial properties that can be used as natural additives in packaging applications. The current trend is the incorporation of EOs into diverse kinds of biodegradable materials, such as edible films, thus developing active packaging systems with improved preservation properties that can offer benefits to both the food and packaging industry by reducing food waste and improving the management of packaging waste. EOs may be added into the packaging material as free or encapsulated molecules, where, especially this last option, has been revealed as very promising. The addition of these lipophilic compounds provides to the end-product various bioactivities of interest, which can eventually extend the shelf-life of the product by preventing food spoilage. Pairing biodegradable packaging with EOs extracted from natural agro-industrial by-products can lead to a more sustainable food industry. Recent knowledge and advances on this issue will be reviewed in the present work.


Sign in / Sign up

Export Citation Format

Share Document