Mechanical, Barrier, and Antimicrobial Properties of Apple Puree Edible Films Containing Plant Essential Oils

2006 ◽  
Vol 54 (24) ◽  
pp. 9262-9267 ◽  
Author(s):  
Maria A. Rojas-Graü ◽  
Roberto J. Avena-Bustillos ◽  
Mendel Friedman ◽  
Philip R. Henika ◽  
Olga Martín-Belloso ◽  
...  
2007 ◽  
Vol 81 (3) ◽  
pp. 634-641 ◽  
Author(s):  
Maria A. Rojas-Graü ◽  
Roberto J. Avena-Bustillos ◽  
Carl Olsen ◽  
Mendel Friedman ◽  
Philip R. Henika ◽  
...  

2022 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Mohammadreza Pajohi Alamoti ◽  
Behnaz Bazargani-Gilani ◽  
Razzagh Mahmoudi ◽  
Anna Reale ◽  
Babak Pakbin ◽  
...  

Aim of this study was to investigate the antimicrobial properties of herbal plant essential oils (EOs) from selected Iranian plant species such as Ferulago angulata, Zataria multiflora, Cuminum cyminum, and Mentha longifolia against antibiotic-resistant Escherichia coli (E. coli) strains. For this purpose, the Escherichia coli strains, isolated from raw cow’s milk and local dairy products (yogurt, cream, whey, cheese, and confectionery products) collected from different areas of Hamedan province, Iran, were investigated for their resistance to antibiotics (i.e., streptomycin, tetracycline, gentamicin, chloramphenicol, ciprofloxacin, and cefixime). Thus, the E. coli strains were tested for their susceptibility to the above-mentioned essential oils. Regarding antibiotics, the E. coli strains were highly sensitive to ciprofloxacin. In relation to essential oils, the most effective antibacterial activity was observed with Zataria multiflora; also, the bacteria were semi-sensitive to Cuminum cyminum and Mentha longifolia essential oils. All strains were resistant to Ferulago angulata essential oil. According to the results, the essential oil of Zataria multiflora can be considered as a practical and alternative antibacterial strategy to inhibit the growth of multidrug-resistant E. coli of dairy origin.


2020 ◽  
Vol 7 ◽  
Author(s):  
Mojtaba Yousefi ◽  
Nasim Khorshidian ◽  
Hedayat Hosseini

One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Mallappa Kumara Swamy ◽  
Mohd Sayeed Akhtar ◽  
Uma Rani Sinniah

A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.


Resources ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Maria Carpena ◽  
Bernabe Nuñez-Estevez ◽  
Anton Soria-Lopez ◽  
Paula Garcia-Oliveira ◽  
Miguel A. Prieto

The food industry is continuously evolving through the application of innovative tools and ingredients towards more effective, safe, natural and ecofriendly solutions to satisfy the demands of the costumers. In this context, natural sources (i.e., leaves, seeds, peels or unused pulp) can entail a valuable source of compounds, such as essential oils (EOs), with recognized antioxidant and antimicrobial properties that can be used as natural additives in packaging applications. The current trend is the incorporation of EOs into diverse kinds of biodegradable materials, such as edible films, thus developing active packaging systems with improved preservation properties that can offer benefits to both the food and packaging industry by reducing food waste and improving the management of packaging waste. EOs may be added into the packaging material as free or encapsulated molecules, where, especially this last option, has been revealed as very promising. The addition of these lipophilic compounds provides to the end-product various bioactivities of interest, which can eventually extend the shelf-life of the product by preventing food spoilage. Pairing biodegradable packaging with EOs extracted from natural agro-industrial by-products can lead to a more sustainable food industry. Recent knowledge and advances on this issue will be reviewed in the present work.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2038
Author(s):  
Thuy Thi Bich Tran ◽  
Boi Ngoc Vu ◽  
Md Saifullah ◽  
Minh Huu Nguyen ◽  
Penta Pristijono ◽  
...  

Edible films and coatings have currently received increasing interest because of their potential in food applications. This study examined the effect of incorporated essential oils and natural plant extracts on the characteristics of the composite seaweed hydrocolloid and gac pulp films. Films were prepared by a casting technique, followed by measurement of physical, optical, barrier, mechanical, and structural properties. The results showed that adding plant oils and extracts significantly affected the physical, optical, mechanical, and structural properties of the composite films. Incorporation of the essential oils resulted in a reduction in moisture content and opacity while increasing values for Hue angle and elongation at break of the composite films. Besides, incorporation of the plant extracts showed increases in thickness, opacity, ΔE, Chroma, and elongation at the break, while there is a decrease in the Hue angle values of the composite films. In conclusion, incorporating plant essential oils and extracts into composite seaweed hydrocolloid and gac pulp films can enhance film properties, which can potentially be applied in food products.


2008 ◽  
Vol 26 (No. 3) ◽  
pp. 174-181 ◽  
Author(s):  
N. Celikel ◽  
G. Kavas

Investigations were carried out to assess the efficiency of five plant essential oils: thyme, myrtle, laurel, sage, and orange oils as natural food preservatives. The effect of the plant essential oils against <i>Escherichia coli</i>, <i>Listeria monocytogenes</i>, <i>Staphylococcus aureus</i> and <i>Candida albicans</i> at concentrations of 5–20 µl/disk (diameter 6 mm) and 0.5–3% (v/v) was studied in agar diffusion test medium and milk medium. The essential oils of these extracts exhibited markedly antibacterial and bacteriostatic activity, with thyme showing the highest inhibition and orange the lowest. However, with thyme extract, high inhibitory activity was observed for all tested concentrations, <i>L. monocytogenes</i> showed less sensitivity towards essential oil extracts.


2012 ◽  
Vol 262 ◽  
pp. 422-425
Author(s):  
Guang Fa Liu ◽  
Jian Qing Wang ◽  
Ya Zhu Zhao

This work explored the use of microcapsules of natural plant essential oils to increase the shelf life of strawberries during storage. First, antimicrobial tests were performed with selected essential oils to evaluate their antimicrobial capacities against moulds isolated from strawberries. Oregano essential oil was found as strong bioactive agents against moulds from strawberries, whereas cinnamon essential oil had lower antimicrobial properties. Then, microcapsules of oregano essential oil were prepared with oregano essential oil, sodium alginate, Tween 80, and monoglycerides, and their internal structure were observed by SEM, and their oils contain were tested by UV-visible spectrophotometer inspection. Different amounts of microcapsules of oregano essential oil were wrapped into small polypropylene non-woven package, and they were pasted on the internal of corrugated boxes. Finally, freshly picked strawberries were put into corrugated boxes and stored at room temperature (from 16°C to 18°C) for 4 days. The results showed that the use of microcapsules of oregano essential oil could effectively inhibit the decay of strawberries, maintain their quality, and extend their shelf life. Strawberries presented the best quality when the amount of microcapsules arrived at 0.828 grams per 500 grams of strawberries.


Sign in / Sign up

Export Citation Format

Share Document