scholarly journals Identification of Metabolism-Associated Prostate Cancer Subtypes and Construction of a Prognostic Risk Model

2020 ◽  
Vol 10 ◽  
Author(s):  
Yanlong Zhang ◽  
Ruiqiao Zhang ◽  
Fangzhi Liang ◽  
Liyun Zhang ◽  
Xuezhi Liang

BackgroundDespite being the second most common tumor in men worldwide, the tumor metabolism-associated mechanisms of prostate cancer (PCa) remain unclear. Herein, this study aimed to investigate the metabolism-associated characteristics of PCa and to develop a metabolism-associated prognostic risk model for patients with PCa.MethodsThe activity levels of PCa metabolic pathways were determined using mRNA expression profiling of The Cancer Genome Atlas Prostate Adenocarcinoma cohort via single-sample gene set enrichment analysis (ssGSEA). The analyzed samples were divided into three subtypes based on the partitioning around medication algorithm. Tumor characteristics of the subsets were then investigated using t-distributed stochastic neighbor embedding (t-SNE) analysis, differential analysis, Kaplan–Meier survival analysis, and GSEA. Finally, we developed and validated a metabolism-associated prognostic risk model using weighted gene co-expression network analysis, univariate Cox analysis, least absolute shrinkage and selection operator, and multivariate Cox analysis. Other cohorts (GSE54460, GSE70768, genotype-tissue expression, and International Cancer Genome Consortium) were utilized for external validation. Drug sensibility analysis was performed on Genomics of Drug Sensitivity in Cancer and GSE78220 datasets. In total, 1,039 samples and six cell lines were concluded in our work.ResultsThree metabolism-associated clusters with significantly different characteristics in disease-free survival (DFS), clinical stage, stemness index, tumor microenvironment including stromal and immune cells, DNA mutation (TP53 and SPOP), copy number variation, and microsatellite instability were identified in PCa. Eighty-four of the metabolism-associated module genes were narrowed to a six-gene signature associated with DFS, CACNG4, SLC2A4, EPHX2, CA14, NUDT7, and ADH5 (p <0.05). A risk model was developed, and external validation revealed the strong robustness our risk model possessed in diagnosis and prognosis as well as the association with the cancer feature of drug sensitivity.ConclusionsThe identified metabolism-associated subtypes reflected the pathogenesis, essential features, and heterogeneity of PCa tumors. Our metabolism-associated risk model may provide clinicians with predictive values for diagnosis, prognosis, and treatment guidance in patients with PCa.

2021 ◽  
Author(s):  
Xiaopeng Ding ◽  
Jiahao Yu ◽  
Xin Shi ◽  
Kangwei Li ◽  
Shuoyi Ma ◽  
...  

Abstract Background: NEDD1 (NEDD1 Gamma-Tubulin Ring Complex Targeting Factor) plays a crucial impact in regulating cell cycle and the development of scirrhous gastric cancer. However, the role of NEDD1 hasn’t been reported in hepatocellular carcinoma (HCC) so far. The aim of this research is to explore the role of NEDD1 on the development and prognosis of HCC. Methods: HCC-related data were download from The Cancer Genome Atlas (TCGA) database. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set enrichment analysis (GSEA) were conducted by the LinkedOmics database. Results: The expression of NEDD1 has significant difference between tumor and adjacent normal tissues in HCC (P<0.01). We also found that NEDD1 was an independent risk factor in HCC patients (HR 1.643, 95%CI 1.125–2.398; P = 0.01). The study also demonstrated that NEDD1 expression was significantly relevant to the expression of several immune checkpoint genes, including CTLA-4, PD-L1 and PD-1. GSEA revealed that Cell cycle, MicroRNAs in cancer and Ribosome pathways were significantly enriched in NEDD1 overexpression phenotype. By integrating NEDD1 with other relevant factors, we constructed the prognostic nomogram to help the improvement of the prognosis for patients with HCC. The data from the International Cancer Genome Consortium (ICGC) database were used as an independent external validation of our prognostic model. Conclusion: The expression level of NEDD1 was negatively correlated to the prognosis of HCC patients and it may be a promising therapeutic target of HCC, which probably be able to predict the efficacy of immunotherapy for HCC patients.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaohan Chang ◽  
Yunxia Dong

Abstract Background CACNA1C, as a type of voltage-dependent calcium ion transmembrane channel, played regulatory roles in the development and progress of multiple tumors. This study was aimed to analyze the roles of CACNA1C in ovarian cancer (OC) of overall survival (OS) and to explore its relationships with immunity. Methods Single gene mRNA sequencing data and corresponding clinical information were obtained from The Cancer Genome Atlas Database (TCGA) and the International Cancer Genome Consortium (ICGC) datasets. Gene set enrichment analysis (GSEA) was used to identify CACNA1C-related signal pathways. Univariate and multivariate Cox regression analyses were applied to evaluate independent prognostic factors. Besides, associations between CACNA1C and immunity were also explored. Results CACNA1C had a lower expression in OC tumor tissues than in normal tissues (P < 0.001), with significant OS (P = 0.013) and a low diagnostic efficiency. We further validated the expression levels of CACNA1C in OC by means of the ICGC dataset (P = 0.01), qRT-PCR results (P < 0.001) and the HPA database. Univariate and multivariate Cox hazard regression analyses indicated that CACNA1C could be an independent risk factor of OS for OC patients (both P < 0.001). Five significant CACNA1C-related signaling pathways were identified by means of GSEA. As for genetic alteration analysis, altered CACNA1C groups were significantly associated with OS (P = 0.0169), progression-free survival (P = 0.0404), disease-free survival (P = 0.0417) and disease-specific survival (P = 9.280e-3), compared with unaltered groups in OC. Besides, CACNA1C was dramatically associated with microsatellite instability (MSI) and immunity. Conclusions Our results shed light on that CACNA1C could be a prognostic predictor of OS in OC and it was closely related to immunity.


2020 ◽  
Vol 19 ◽  
pp. 153303382095935
Author(s):  
Zi-jian Su ◽  
Chun-cheng Lin ◽  
Jian-hui Pan ◽  
Jian-hua Zhang ◽  
Tao Han ◽  
...  

Objective: Hepatocellular Carcinoma (HCC) has the highest mortality rate worldwide with the intractability of its extremely complicated pathogenesis and unclear mechanism. The limited survival highlights the need for the further detection of prognosis for HCC. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been identified as regulatory factors and target genes in human cancers, while some studies also found post-transcriptional modification plays a crucial role in the occurrence and development of HCC. The present study aimed to elucidate the prognostic significance of miRNA and mRNA models in HCC. Methods: Data were obtained from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. The miRNA and mRNA expressions were tested by the Wilcoxon and used funrich software to predict mRNA that might be related to miRNA. Then we determined the intersection with overlapped mRNA and miRNA Venn diagram, and screened out hub gene by using Degree algorithm in Cytoscape software. The COX models, with TCGA data as the training set and ICGC data as the test set, were constructed. All patients were divided into high-risk and low-risk groups. Data on overall survival of different groups were collected and analyzed by Kaplan-Meier method, and independent risk factors affecting prognosis were assessed by Cox analysis. Results: The miRNA and mRNA polygenic risk model showed a good true positive rate. Kaplan-Meier curve and Cox analysis suggested that the high-risk group was associated with poor prognosis, and the risk score could be used as an independent risk factor for HCC. Conclusion: Tumor risk models constructed in this study could effectively predict the prognosis of patients, which is expected to provide a reference for the prognostic stratification and treatment strategy development of HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhihao Zou ◽  
Ren Liu ◽  
Yingke Liang ◽  
Rui Zhou ◽  
Qishan Dai ◽  
...  

BackgroundProstate cancer (PCa) is the most common malignant male neoplasm in the American male population. Our prior studies have demonstrated that protein phosphatase 1 regulatory subunit 12A (PPP1R12A) could be an efficient prognostic factor in patients with PCa, promoting further investigation. The present study attempted to construct a gene signature based on PPP1R12A and metabolism-related genes to predict the prognosis of PCa patients.MethodsThe mRNA expression profiles of 499 tumor and 52 normal tissues were extracted from The Cancer Genome Atlas (TCGA) database. We selected differentially expressed PPP1R12A-related genes among these mRNAs. Tandem affinity purification-mass spectrometry was used to identify the proteins that directly interact with PPP1R12A. Gene set enrichment analysis (GSEA) was used to extract metabolism-related genes. Univariate Cox regression analysis and a random survival forest algorithm were used to confirm optimal genes to build a prognostic risk model.ResultsWe identified a five-gene signature (PPP1R12A, PTGS2, GGCT, AOX1, and NT5E) that was associated with PPP1R12A and metabolism in PCa, which effectively predicted disease-free survival (DFS) and biochemical relapse-free survival (BRFS). Moreover, the signature was validated by two internal datasets from TCGA and one external dataset from the Gene Expression Omnibus (GEO).ConclusionThe five-gene signature is an effective potential factor to predict the prognosis of PCa, classifying PCa patients into high- and low-risk groups, which might provide potential novel treatment strategies for these patients.


Author(s):  
Zhengtong Lv ◽  
Jianlong Wang ◽  
Xuan Wang ◽  
Miao Mo ◽  
Guyu Tang ◽  
...  

Ferroptosis induced by lipid peroxidation is closely related to cancer biology. Prostate cancer (PCa) is not only a malignant tumor but also a lipid metabolic disease. Previous studies have identified ferroptosis as an important pathophysiological pathway in PCa development and treatment, but its role in the prognosis of PCa is less well known. In this study, we constructed a nine-ferroptosis-related gene risk model that demonstrated strong prognostic and therapeutic predictive power. The higher risk score calculated by the model was significantly associated with a higher ferroptosis potential index, higher Ki67 expression, higher immune infiltration, higher probability of biochemical recurrence, worse clinicopathological characteristics, and worse response to chemotherapy and antiandrogen therapy in PCa. The mechanisms identified by the gene set enrichment analysis suggested that this signature can accurately distinguish high- and low-risk populations, which is possibly closely related to variations in steroid hormone secretion, regulation of endocrine processes, positive regulation of humoral immune response, and androgen response. Results of this study were confirmed in two independent PCa cohorts, namely, The Cancer Genome Atlas cohort and the MSK-IMPACT Clinical Sequencing Cohort, which contributed to the body of scientific evidence for the prediction of biochemical recurrence in patients with PCa. In addition, as the main components of this signature, the effects of the AIFM2 and NFS1 genes on ferroptosis were evaluated and verified by in vivo and in vitro experiments, respectively. The above findings provided new insights and presented potential clinical applications of ferroptosis in PCa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuaishuai Fan ◽  
Zheng Wang ◽  
Li Zhao ◽  
ChenHui Zhao ◽  
DaJiang Yuan ◽  
...  

Prostate cancer (PCa) is the second most common malignancy in men, but its exact pathogenetic mechanisms remain unclear. This study explores the effect of enhancer RNAs (eRNAs) in PCa. Firstly, we screened eRNAs and eRNA -driven genes from The Cancer Genome Atlas (TCGA) database, which are related to the disease-free survival (DFS) of PCa patients;. screening methods included bootstrapping, Kaplan–Meier (KM) survival analysis, and Pearson correlation analysis. Then, a risk score model was established using multivariate Cox analysis, and the results were validated in three independent cohorts. Finally, we explored the function of eRNA-driven genes through enrichment analysis and analyzed drug sensitivity on datasets from the Genomics of Drug Sensitivity in Cancer database. We constructed and validated a robust prognostic gene signature involving three eRNA-driven genes namely MAPK15, ZNF467, and MC1R. Moreover, we evaluated the function of eRNA-driven genes associated with tumor microenvironment (TME) and tumor mutational burden (TMB), and identified remarkable differences in drug sensitivity between high- and low-risk groups. This study identified a prognostic gene signature, which provides new insights into the role of eRNAs and eRNA-driven genes while assisting clinicians to determine the prognosis and appropriate treatment options for patients with PCa.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiahua Liu ◽  
Chunhui Jiang ◽  
Chunjie Xu ◽  
Dongyang Wang ◽  
Yuguang Shen ◽  
...  

AbstractThe overall survival of metastatic colon adenocarcinoma (COAD) remains poor, so it is important to explore the mechanisms of metastasis and invasion. This study aimed to identify invasion-related genetic markers for prognosis prediction in patients with COAD. Three molecular subtypes (C1, C2, and C3) were obtained based on 97 metastasis-related genes in 365 COAD samples from The Cancer Genome Atlas (TCGA). A total of 983 differentially expressed genes (DEGs) were identified among the different subtypes by using the limma package. A 6-gene signature (ITLN1, HOXD9, TSPAN11, GPRC5B, TIMP1, and CXCL13) was constructed via Lasso-Cox analysis. The signature showed strong robustness and could be used in the training, testing, and external validation (GSE17537) cohorts with stable predictive efficiency. Compared with other published signatures, our model showed better performance in predicting outcomes. Pan-cancer expression analysis results showed that ITLN1, TSPAN11, CXCL13, and GPRC5B were downregulated and TIMP1 was upregulated in most tumor samples, including COAD, which was consistent with the results of the TCGA and GEO cohorts. Western blot analysis and immunohistochemistry were performed to validate protein expression. Tumor immune infiltration analysis results showed that TSPAN11, GPRC5B, TIMP1, and CXCL13 protein levels were significantly positively correlated with CD4+ T cells, macrophages, neutrophils, and dendritic cells. Further, the TIMP1 and CXCL13 proteins were significantly related to the tumor immune infiltration of CD8+ T cells. We recommend using our signature as a molecular prognostic classifier to assess the prognostic risk of patients with COAD.


2021 ◽  
Author(s):  
Yuqin Wei ◽  
Fan Wu ◽  
Shengfeng Zhang ◽  
Yanlin Tan ◽  
Qunying Wu ◽  
...  

Abstract Background The expression of GALNT14 in kidney renal clear cell carcinoma (KIRC) and its clinical significance remains unknown. Methods The KIRC data expressed by GALNT14 was downloaded from The Cancer Genome Atlas (TCGA) database. The expression of GALNT14 was analyzed by R software, Perl software and online analysis database. The relationship between GALNT14 expression and clinicopathological features in KIRC was analyzed by univariate, multivariate Cox regression and some databases. Gene Expression Profling Interactive Analysis (GEPIA), Starbase v3.0, UALCAN, and Kaplan-Meier were used to analyze the relationship between GALNT14 expression and overall survival (OS) in KIRC. UALCAN detects the expression of GALNT14 methylation in KIRC. Linkedomics and Genemania were used to analyze the gene co-expression of GALNT14. Gene Set Enrichment Analysis (GSEA) was performed to search for potential regulatory pathways. Results We found that GALNT14 was overexpressed in KIRC (p=1.433e-25). Patients with high GALNT14 expression in KIRC had a better prognosis than patients with low GALNT14 expression (p=0.008). In addition, high GALNT14 expression in KIRC was significantly associated with low T stage and positive OS (p<0.05). Univariate Cox analysis showed that GALNT14 was positively correlated with OS (p<0.001). Multivariate Cox analysis showed that GALNT14 was associated with OS (p<0.001), age (p=0.01) and histological grade (p=0.02). GALNT14 methylation is low expressed in KIRC (p<0.001). GSEA analysis showed that GALNT14 was enriched in histidine metabolism, peroxisome, and renin-angiotensin system pathways. Conclusion GALNT14 can be used as an independent prognostic factor for renal clear cell carcinoma and a potential target for clinical diagnosis and treatment of KIRC.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lan-Xin Mu ◽  
You-Cheng Shao ◽  
Lei Wei ◽  
Fang-Fang Chen ◽  
Jing-Wei Zhang

Purpose: This study aims to reveal the relationship between RNA N6-methyladenosine (m6A) regulators and tumor immune microenvironment (TME) in breast cancer, and to establish a risk model for predicting the occurrence and development of tumors.Patients and methods: In the present study, we respectively downloaded the transcriptome dataset of breast cancer from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database to analyze the mutation characteristics of m6A regulators and their expression profile in different clinicopathological groups. Then we used the weighted correlation network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), and cox regression to construct a risk prediction model based on m6A-associated hub genes. In addition, Immune infiltration analysis and gene set enrichment analysis (GSEA) was used to evaluate the immune cell context and the enriched gene sets among the subgroups.Results: Compared with adjacent normal tissue, differentially expressed 24 m6A regulators were identified in breast cancer. According to the expression features of m6A regulators above, we established two subgroups of breast cancer, which were also surprisingly distinguished by the feature of the immune microenvironment. The Model based on modification patterns of m6A regulators could predict the patient’s T stage and evaluate their prognosis. Besides, the low m6aRiskscore group presents an immune-activated phenotype as well as a lower tumor mutation load, and its 5-years survival rate was 90.5%, while that of the high m6ariskscore group was only 74.1%. Finally, the cohort confirmed that age (p &lt; 0.001) and m6aRiskscore (p &lt; 0.001) are both risk factors for breast cancer in the multivariate regression.Conclusion: The m6A regulators play an important role in the regulation of breast tumor immune microenvironment and is helpful to provide guidance for clinical immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuomao Mo ◽  
Daiyuan Liu ◽  
Dade Rong ◽  
Shijun Zhang

Background: Generally, hepatocellular carcinoma (HCC) exists in an immunosuppressive microenvironment that promotes tumor evasion. Hypoxia can impact intercellular crosstalk in the tumor microenvironment. This study aimed to explore and elucidate the underlying relationship between hypoxia and immunotherapy in patients with HCC.Methods: HCC genomic and clinicopathological datasets were obtained from The Cancer Genome Atlas (TCGA-LIHC), Gene Expression Omnibus databases (GSE14520) and International Cancer Genome Consortium (ICGC-LIRI). The TCGA-LIHC cases were divided into clusters based on single sample gene set enrichment analysis and hierarchical clustering. After identifying patients with immunosuppressive microenvironment with different hypoxic conditions, correlations between immunological characteristics and hypoxia clusters were investigated. Subsequently, a hypoxia-associated score was established by differential expression, univariable Cox regression, and lasso regression analyses. The score was verified by survival and receiver operating characteristic curve analyses. The GSE14520 cohort was used to validate the findings of immune cell infiltration and immune checkpoints expression, while the ICGC-LIRI cohort was employed to verify the hypoxia-associated score.Results: We identified hypoxic patients with immunosuppressive HCC. This cluster exhibited higher immune cell infiltration and immune checkpoint expression in the TCGA cohort, while similar significant differences were observed in the GEO cohort. The hypoxia-associated score was composed of five genes (ephrin A3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2, and lysyl oxidase). In both two cohorts, survival analysis revealed significant differences between the high-risk and low-risk groups. In addition, compared to other clinical parameters, the established score had the highest predictive performance at both 3 and 5 years in two cohorts.Conclusion: This study provides further evidence of the link between hypoxic signals in patients and immunosuppression in HCC. Defining hypoxia-associated HCC subtypes may help reveal potential regulatory mechanisms between hypoxia and the immunosuppressive microenvironment, and our hypoxia-associated score could exhibit potential implications for future predictive models.


Sign in / Sign up

Export Citation Format

Share Document