scholarly journals CD155 Promotes the Progression of Cervical Cancer Cells Through AKT/mTOR and NF-κB Pathways

2021 ◽  
Vol 11 ◽  
Author(s):  
Lu Liu ◽  
Ying Wang ◽  
Chen Geng ◽  
Aihong Wang ◽  
Sai Han ◽  
...  

Expression of the immunoglobulin superfamily member CD155 was increased in a variety of human malignancies, but the role of CD155 in tumorigenesis and tumor development in cervical cancer has not been elucidated. In this study, immunohistochemistry and enzyme-linked immunosorbent assay analyses showed that CD155 expression gradually increases with the degree of cervical lesions. In vitro and in vivo, reducing the expression of CD155 inhibited cell proliferation, cell viability and tumor formation and arrested the cell cycle in G0/G1 phase. Antibody array-based profiling of protein phosphorylation revealed that CD155 knockdown can inhibited the AKT/mTOR/NF-κB pathway and activated autophagy and apoptosis; the opposite effects were observed upon CD155 has overexpression. We proved that there is an interaction between CD155 and AKT by immunoprecipitation. We further confirmed the mechanism between CD155 and AKT/mTOR/NF-κB through rescue experiments. AKT knockdown reversed the anti-apoptotic effects and activation of the AKT/mTOR/NF-κB pathway induced by CD155 overexpression. Our research demonstrated that CD155 can interact with AKT to form a complex, activates the AKT/mTOR/NF-κB pathway and inhibit autophagy and apoptosis. Thus, CD155 is a potential screening and therapeutic biomarker for cervical cancer.

2019 ◽  
Vol 12 (04) ◽  
pp. 1661-1673
Author(s):  
Muhammad Nabil ◽  
Azman Seeni ◽  
Wan Ismahanisa Ismail ◽  
Nurhidayah Ab. Rahim ◽  
Syarifah Masyitah Habib Dzulkarnain

Cervical cancer has been ranked as the third most common cancer among women worldwide. As an alternative to existing preventive and treatment measures, natural plants have been seen to carry potential therapeutic value against cancers. These include Streblus asper which proved to possess anti-cancer effects on several types of cancer. In the present study, we observed that S.asper is able to induce apoptosis on cervical cancer cells through the regulation of several apoptotic proteins. This analysis was performed using both in vitro and in vivo models. The protein expression was analysed using antibody array, 28 protein markers were found differentially expressed in both study models. Based on these findings, we propose that S.asper induces apoptosis on cervical cancer cells through TNF signaling which in turn triggers the activation of SMAC pathway and blockage of NF-κB cascade. It is also suggested that the apoptosis inducement is assisted by the HSP60 downregulation which subsequently results in p53 activation and survivin down-expression. Our study provides a preliminary understanding on selective apoptotic mechanism induced by S.asper on cervical cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Lei ◽  
Wen-Ting Yang ◽  
Peng-Sheng Zheng

AbstractHomeobox B4 (HOXB4), which belongs to the homeobox (HOX) family, possesses transcription factor activity and has a crucial role in stem cell self-renewal and tumorigenesis. However, its biological function and exact mechanism in cervical cancer remain unknown. Here, we found that HOXB4 was markedly downregulated in cervical cancer. We demonstrated that HOXB4 obviously suppressed cervical cancer cell proliferation and tumorigenic potential in nude mice. Additionally, HOXB4-induced cell cycle arrest at the transition from the G0/G1 phase to the S phase. Conversely, loss of HOXB4 promoted cervical cancer cell growth both in vitro and in vivo. Bioinformatics analyses and mechanistic studies revealed that HOXB4 inhibited the activity of the Wnt/β-catenin signaling pathway by direct transcriptional repression of β-catenin. Furthermore, β-catenin re-expression rescued HOXB4-induced cervical cancer cell defects. Taken together, these findings suggested that HOXB4 directly transcriptional repressed β-catenin and subsequently inactivated the Wnt/β-catenin signaling pathway, leading to significant inhibition of cervical cancer cell growth and tumor formation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


2021 ◽  
Vol 12 (4) ◽  
pp. 045006
Author(s):  
Thoko Malinga ◽  
Tukayi Kudanga ◽  
Londiwe Simphiwe Mbatha

Abstract Bimetallic nanosized delivery systems are attracting a lot of research interest as alternatives to monometallic delivery systems. This study evaluated the ability of bimetallic selenium silver chitosan pegylated folic acid targeted nanoparticles (SeAgChPEGFA NPs) to deliver doxorubicin (DOX) in cervical cancer cells. Comparison studies using monometallic selenium chitosan pegylated folic acid (SeChPEGFA NPs) targeted NPs and free DOX were also conducted. The prepared NPs and their drug nanocomplexes were characterised morphologically and physico-chemically. Drug binding and releasing studies were conducted under a simulated environment in vitro. The cytotoxicity and apoptosis studies were studied using the 3-[(4, 5-dimethylthiazol-2-yl)−2, 5-diphenyl tetrazolium bromide] (MTT) assay and the dual dye staining. The findings revealed that the bimetallic SeAgChPEGFA NPs displayed better colloidal stability, superior physico-chemical qualities, and higher binding abilities in comparison with monometallic SeChPEGFA NPs. In addition, the SeAgChPEGFA NPs showed the pH-triggered controlled drug release and cell-specific cytotoxicity. These findings suggest that the bimetallic NPs are superior delivery systems when compared to their monometallic NPs and free drug counterparts, thus, setting a platform for further in vivo examination.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Min Deng ◽  
Xiaodong Cai ◽  
Ling Long ◽  
Linying Xie ◽  
Hongmei Ma ◽  
...  

Abstract Background Accumulating evidence indicates that CD36 initiates metastasis and correlates with an unfavorable prognosis in cancers. However, there are few reports regarding the roles of CD36 in initiation and metastasis of cervical cancer. Methods Using immunohistochemistry, we analyzed 133 cervical cancer samples for CD36 protein expression levels, and then investigated the correlation between changes in its expression and clinicopathologic parameters. The effect of CD36 expression on the epithelial–mesenchymal transition (EMT) in cervical cancer cells was evaluated by Western immunoblotting analysis. In vitro invasion and in vivo metastasis assays were also used to evaluate the role of CD36 in cervical cancer metastasis. Results In the present study, we confirmed that CD36 was highly expressed in cervical cancer samples relative to normal cervical tissues. Moreover, overexpression of CD36 promoted invasiveness and metastasis of cervical cancer cells in vitro and in vivo, while CD36 knockdown suppressed proliferation, migration, and invasiveness. We demonstrated that TGF-β treatment attenuated E-cadherin expression and enhanced the expression levels of CD36, vimentin, slug, snail, and twist in si-SiHa, si-HeLa, and C33a–CD36 cells, suggesting that TGF-β synergized with CD36 on EMT via active CD36 expression. We also observed that the expression levels of TGF-β in si-SiHa cells and si-HeLa cells were down-regulated, whereas the expression levels of TGF-β were up-regulated in C33a–CD36 cells. These results imply that CD36 and TGF-β interact with each other to promote the EMT in cervical cancer. Conclusions Our findings suggest that CD36 is likely to be an effective target for guiding individualized clinical therapy of cervical cancer.


2014 ◽  
Vol 9 (1) ◽  
pp. 84 ◽  
Author(s):  
Judong Luo ◽  
Wei Zhu ◽  
Yiting Tang ◽  
Han Cao ◽  
Yuanyuan Zhou ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 532
Author(s):  
Jiajun Ni ◽  
Hualin Feng ◽  
Xiang Xu ◽  
Tingting Liu ◽  
Ting Ye ◽  
...  

Aphrocallistes vastus lectin (AVL) is a C-type marine lectin produced by sponges. Our previous study demonstrated that genes encoding AVL enhanced the cytotoxic effect of oncolytic vaccinia virus (oncoVV) in a variety of cancer cells. In this study, the inhibitory effect of oncoVV-AVL on Hela S3 cervical cancer cells, a cell line with spheroidizing ability, was explored. The results showed that oncoVV-AVL could inhibit Hela S3 cells growth both in vivo and in vitro. Further investigation revealed that AVL increased the virus replication, promote the expression of OASL protein and stimulated the activation of Raf in Hela S3 cells. This study may provide insight into a novel way for the utilization of lection AVL.


Sign in / Sign up

Export Citation Format

Share Document