scholarly journals A Novel Ferroptosis-Related Gene Model for Overall Survival Predictions of Bladder Urothelial Carcinoma Patients

2021 ◽  
Vol 11 ◽  
Author(s):  
Min Zhang ◽  
Xin Zhang ◽  
Minghang Yu ◽  
Wei Zhang ◽  
Di Zhang ◽  
...  

IntroductionBladder cancer is the most common urinary tract malignancy, and 90% of bladder tumors are urothelial cell carcinomas. Ferroptosis is a new form of cell death discovered in recent years, which is an iron-dependent form of cell death characterized by the lethal intracellular accumulation of lipid-based reactive oxygen species. Ferroptosis is considered to be a double-edged sword for cancer and cancer therapy.Materials and MethodsIn the current study, expression profiles of bladder cancer (BLCA) specimens were obtained from The Cancer Genome Atlas (TCGA) RNA-Seq database. Ferroptosis-related genes were downloaded from the FerrDb website. The ferroptosis-related differentially expressed genes (DEGs) which were related to overall survival (OS) were first identified. The least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression methods were utilized to develop a ferroptosis-related prognostic model (FRPM). In addition, a nomogram model based on FRPM and clinicopathological features was successfully constructed and validated. In addition, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and single-sample gene set enrichment analysis (ssGSEA) methods were utilized in this study in order to compare the DEGs between the high-risk and low-risk groups. This study also adopted RT-qPCR, CCK-8 assay, and scratch assay methods to perform experimental verification processes.Results and DiscussionA 7-gene FRPM was constructed in this research investigation in order to stratify the patients into two groups according to their risk scores. The results of this study’s survival analysis and time-dependent receiver operating characteristic (ROC) analysis demonstrated that the model had achieved a stable performance level. This multivariate Cox regression results revealed that the FRPM was an independent prognostic predictor for the OS of BLCA patients and the results were displayed using a nomogram. In addition, the ROC analysis, concordance index (C-index), calibration plots, and decision curve analysis (DCA) curves further indicated that this study’s nomogram method enabled valuable prediction results. The functional enrichment analysis results suggested that the DEGs between the high- and low-risk groups played vital roles in the progression of the ferroptosis. Also, the ssGSEA indicated that the immune status was different between the two groups. This study found that the RT-qPCR results had confirmed the differential expressions of DEGs in the tissue samples, and the CCK-8 assay and scratch assay results confirmed the promoting effects of SCD on the proliferation and migration of tumor cells.ConclusionsThis study defined a novel prognostic model of seven ferroptosis-related genes, which proved to be independently associated with the OS of BLCA. A nomogram method was developed for the purpose of providing further insight into the accurate predictions of BLCA prognoses.

2021 ◽  
Vol 11 ◽  
Author(s):  
Libo Yang ◽  
Chunyan Li ◽  
Yang Qin ◽  
Guoying Zhang ◽  
Bin Zhao ◽  
...  

BackgroundBladder cancer (BC) is a molecular heterogeneous malignant tumor; the treatment strategies for advanced-stage patients were limited. Therefore, it is vital for improving the clinical outcome of BC patients to identify key biomarkers affecting prognosis. Ferroptosis is a newly discovered programmed cell death and plays a crucial role in the occurrence and progression of tumors. Ferroptosis-related genes (FRGs) can be promising candidate biomarkers in BC. The objective of our study was to construct a prognostic model to improve the prognosis prediction of BC.MethodsThe mRNA expression profiles and corresponding clinical data of bladder urothelial carcinoma (BLCA) patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. FRGs were identified by downloading data from FerrDb. Differential analysis was performed to identify differentially expressed genes (DEGs) related to ferroptosis. Univariate and multivariate Cox regression analyses were conducted to establish a prognostic model in the TCGA cohort. BLCA patients from the GEO cohort were used for validation. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and single-sample gene set enrichment analysis (ssGSEA) were used to explore underlying mechanisms.ResultsNine genes (ALB, BID, FADS2, FANCD2, IFNG, MIOX, PLIN4, SCD, and SLC2A3) were identified to construct a prognostic model. Patients were classified into high-risk and low-risk groups according to the signature-based risk score. Receiver operating characteristic (ROC) and Kaplan–Meier (K–M) survival analysis confirmed the superior predictive performance of the novel survival model based on the nine-FRG signature. Multivariate Cox regression analyses showed that risk score was an independent risk factor associated with overall survival (OS). GO and KEGG enrichment analysis indicated that apart from ferroptosis-related pathways, immune-related pathways were significantly enriched. ssGSEA analysis indicated that the immune status was different between the two risk groups.ConclusionThe results of our study indicated that a novel prognostic model based on the nine-FRG signature can be used for prognostic prediction in BC patients. FRGs are potential prognostic biomarkers and therapeutic targets.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qian Yan ◽  
Wenjiang Zheng ◽  
Boqing Wang ◽  
Baoqian Ye ◽  
Huiyan Luo ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a disease with a high incidence and a poor prognosis. Growing amounts of evidence have shown that the immune system plays a critical role in the biological processes of HCC such as progression, recurrence, and metastasis, and some have discussed using it as a weapon against a variety of cancers. However, the impact of immune-related genes (IRGs) on the prognosis of HCC remains unclear. Methods Based on The Cancer Gene Atlas (TCGA) and Immunology Database and Analysis Portal (ImmPort) datasets, we integrated the ribonucleic acid (RNA) sequencing profiles of 424 HCC patients with IRGs to calculate immune-related differentially expressed genes (DEGs). Survival analysis was used to establish a prognostic model of survival- and immune-related DEGs. Based on genomic and clinicopathological data, we constructed a nomogram to predict the prognosis of HCC patients. Gene set enrichment analysis further clarified the signalling pathways of the high-risk and low-risk groups constructed based on the IRGs in HCC. Next, we evaluated the correlation between the risk score and the infiltration of immune cells, and finally, we validated the prognostic performance of this model in the GSE14520 dataset. Results A total of 100 immune-related DEGs were significantly associated with the clinical outcomes of patients with HCC. We performed univariate and multivariate least absolute shrinkage and selection operator (Lasso) regression analyses on these genes to construct a prognostic model of seven IRGs (Fatty Acid Binding Protein 6 (FABP6), Microtubule-Associated Protein Tau (MAPT), Baculoviral IAP Repeat Containing 5 (BIRC5), Plexin-A1 (PLXNA1), Secreted Phosphoprotein 1 (SPP1), Stanniocalcin 2 (STC2) and Chondroitin Sulfate Proteoglycan 5 (CSPG5)), which showed better prognostic performance than the tumour/node/metastasis (TNM) staging system. Moreover, we constructed a regulatory network related to transcription factors (TFs) that further unravelled the regulatory mechanisms of these genes. According to the median value of the risk score, the entire TCGA cohort was divided into high-risk and low-risk groups, and the low-risk group had a better overall survival (OS) rate. To predict the OS rate of HCC, we established a gene- and clinical factor-related nomogram. The receiver operating characteristic (ROC) curve, concordance index (C-index) and calibration curve showed that this model had moderate accuracy. The correlation analysis between the risk score and the infiltration of six common types of immune cells showed that the model could reflect the state of the immune microenvironment in HCC tumours. Conclusion Our IRG prognostic model was shown to have value in the monitoring, treatment, and prognostic assessment of HCC patients and could be used as a survival prediction tool in the near future.


2020 ◽  
Author(s):  
Mo Chen ◽  
Tian-en Li ◽  
Pei-zhun Du ◽  
Junjie Pan ◽  
Zheng Wang ◽  
...  

Abstract Background and aims: In this research, we aimed to construct a risk classification model to predict overall survival (OS) and locoregional surgery benefit in colorectal cancer (CRC) patients with distant metastasis.Methods: We selected a cohort consisting of 12741 CRC patients diagnosed with distant metastasis between 2010 and 2014, from the Surveillance, Epidemiology and End Results (SEER) database. Patients were randomly assigned into training group and validation group at the ratio of 2:1. Univariable and multivariable Cox regression models were applied to screen independent prognostic factors. A nomogram was constructed and assessed by the Harrell’s concordance index (C-index) and calibration plots. A novel risk classification model was further established based on the nomogram.Results: Ultimately 12 independent risk factors including race, age, marriage, tumor site, tumor size, grade, T stage, N stage, bone metastasis, brain metastasis, lung metastasis and liver metastasis were identified and adopted in the nomogram. The C-indexes of training and validation groups were 0.77 (95% confidence interval [CI] 0.73-0.81) and 0.75 (95% CI 0.72-0.78), respectively. The risk classification model stratified patients into three risk groups (low-, intermediate- and high-risk) with divergent median OS (low-risk: 36.0 months, 95% CI 34.1-37.9; intermediate-risk: 18.0 months, 95% CI 17.4-18.6; high-risk: 6.0 months, 95% CI 5.3-6.7). Locoregional therapies including surgery and radiotherapy could prognostically benefit patients in the low-risk group (surgery: hazard ratio [HR] 0.59, 95% CI 0.50-0.71; radiotherapy: HR 0.84, 95% CI 0.72-0.98) and intermediate risk group (surgery: HR 0.61, 95% CI 0.54-0.68; radiotherapy: HR 0.86, 95% CI 0.77-0.95), but not in the high-risk group (surgery: HR 1.03, 95% CI 0.82-1.29; radiotherapy: HR 1.03, 95% CI 0.81-1.31). And all risk groups could benefit from systemic therapy (low-risk: HR 0.68, 95% CI 0.58-0.80; intermediate-risk: HR 0.50, 95% CI 0.47-0.54; high-risk: HR 0.46, 95% CI 0.40-0.53).Conclusion: A novel risk classification model predicting prognosis and locoregional surgery benefit of CRC patients with distant metastasis was established and validated. This predictive model could be further utilized by physicians and be of great significance for medical practice.


2020 ◽  
Author(s):  
Qiang Cai ◽  
Shizhe Yu ◽  
Jian Zhao ◽  
Duo Ma ◽  
Long Jiang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is heterogeneous disease occurring in the background of chronic liver diseases. The role of glycosyltransferase (GT) genes have recently been the focus of research associating with the development of tumors. However, the prognostic value of GT genes in HCC remains not elucidated. This study aimed to demonstrate the GT genes related to the prognosis of HCC through bioinformatics analysis.Methods: The GT genes signatures were identified from the training set of The Cancer Genome Atlas (TCGA) dataset using univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses. Then, we analyzed the prognostic value of GT genes signatures related to the overall survival (OS) of HCC patients. A prognostic model was constructed, and the risk score of each patient was calculated as formula, which divided HCC patients into high- and low-risk groups. Kaplan-Meier (K-M) and Receiver operating characteristic (ROC) curves were used to assess the OS of HCC patients. The prognostic value of GT genes signatures was further investigated in the validation set of TCGA database. Univariate and multivariate Cox regression analyses were performed to demonstrate the independent factors on OS. Finally, we utilized the gene set enrichment analysis (GSEA) to annotate the function of these genes between the two risk categories. Results: In this study, we identified and validated 4 GT genes as the prognostic signatures. The K-M analysis showed that the survival rate of the high-risk patients was significantly lower than that of the low-risk patients. The risk score calculated with 4 gene signatures could predict OS for 3-, 5-, and 7-year in patients with HCC, revealing the prognostic ability of these gene signature. In addition, Multivariate Cox regression analyses indicated that the risk score was an independent prognostic factor for HCC. Functional analysis further revealed that immune-related pathways were enriched, and immune status in HCC were different between the two risk groups.Conclusion: In conclusion, a novel GT genes signature can be used for prognostic prediction in HCC. Thus, targeting GT genes may be a therapeutic alternative for HCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pu Wu ◽  
Jinyuan Shi ◽  
Wei Sun ◽  
Hao Zhang

Abstract Background Pyroptosis is a form of programmed cell death triggered by inflammasomes. However, the roles of pyroptosis-related genes in thyroid cancer (THCA) remain still unclear. Objective This study aimed to construct a pyroptosis-related signature that could effectively predict THCA prognosis and survival. Methods A LASSO Cox regression analysis was performed to build a prognostic model based on the expression profile of each pyroptosis-related gene. The predictive value of the prognostic model was validated in the internal cohort. Results A pyroptosis-related signature consisting of four genes was constructed to predict THCA prognosis and all patients were classified into high- and low-risk groups. Patients with a high-risk score had a poorer overall survival (OS) than those in the low-risk group. The area under the curve (AUC) of the receiver operator characteristic (ROC) curves assessed and verified the predictive performance of this signature. Multivariate analysis showed the risk score was an independent prognostic factor. Tumor immune cell infiltration and immune status were significantly higher in low-risk groups, which indicated a better response to immune checkpoint inhibitors (ICIs). Of the four pyroptosis-related genes in the prognostic signature, qRT-PCR detected three of them with significantly differential expression in THCA tissues. Conclusion In summary, our pyroptosis-related risk signature may have an effective predictive and prognostic capability in THCA. Our results provide a potential foundation for future studies of the relationship between pyroptosis and the immunotherapy response.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jianyi Li ◽  
Xiaojie Tang ◽  
Yukun Du ◽  
Jun Dong ◽  
Zheng Zhao ◽  
...  

Purpose. Osteosarcoma is the most common primary and highly invasive bone tumor in children and adolescents. The purpose of this study is to construct a multi-gene expression feature related to autophagy, which can be used to predict the prognosis of patients with osteosarcoma. Materials and methods. The clinical and gene expression data of patients with osteosarcoma were obtained from the target database. Enrichment analysis of autophagy-related genes related to overall survival (OS-related ARGs) screened by univariate Cox regression was used to determine OS-related ARGs function and signal pathway. In addition, the selected OS-related ARGs were incorporated into multivariate Cox regression to construct prognostic signature for the overall survival (OS) of osteosarcoma. Use the dataset obtained from the GEO database to verify the signature. Besides, gene set enrichment analysis (GSEA) were applied to further elucidate the molecular mechanisms. Finally, the nomogram is established by combining the risk signature with the clinical characteristics. Results. Our study eventually included 85 patients. Survival analysis showed that patients with low riskScore had better OS. In addition, 16 genes were included in OS-related ARGs. We also generate a prognosis signature based on two OS-related ARGs. The signature can significantly divide patients into low-risk groups and high-risk groups, and has been verified in the data set of GEO. Subsequently, the riskScore, primary tumor site and metastasis status were identified as independent prognostic factors for OS and a nomogram were generated. The C-index of nomogram is 0.789 (95% CI: 0.703~0.875), ROC curve and calibration chart shows that nomogram has a good consistency between prediction and observation of patients. Conclusions. ARGs was related to the prognosis of osteosarcoma and can be used as a biomarker of prognosis in patients with osteosarcoma. Nomogram can be used to predict OS of patients and improve treatment strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Facai Zhang ◽  
Xiaoming Wang ◽  
Yunjin Bai ◽  
Huan Hu ◽  
Yubo Yang ◽  
...  

ObjectivesThis study aimed to develop and validate a hypoxia signature for predicting survival outcomes in patients with bladder cancer.MethodsWe downloaded the RNA sequence and the clinicopathologic data of the patients with bladder cancer from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/repository?facetTab=files) and the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. Hypoxia genes were retrieved from the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Differentially expressed hypoxia-related genes were screened by univariate Cox regression analysis and Lasso regression analysis. Then, the selected genes constituted the hypoxia signature and were included in multivariate Cox regression to generate the risk scores. After that, we evaluate the predictive performance of this signature by multiple receiver operating characteristic (ROC) curves. The CIBERSORT tool was applied to investigate the relationship between the hypoxia signature and the immune cell infiltration, and the maftool was used to summarize and analyze the mutational data. Gene-set enrichment analysis (GSEA) was used to investigate the related signaling pathways of differentially expressed genes in both risk groups. Furthermore, we developed a model and presented it with a nomogram to predict survival outcomes in patients with bladder cancer.ResultsEight genes (AKAP12, ALDOB, CASP6, DTNA, HS3ST1, JUN, KDELR3, and STC1) were included in the hypoxia signature. The patients with higher risk scores showed worse overall survival time than the ones with lower risk scores in the training set (TCGA) and two external validation sets (GSE13507 and GSE32548). Immune infiltration analysis showed that two types of immune cells (M0 and M1 macrophages) had a significant infiltration in the high-risk group. Tumor mutation burden (TMB) analysis showed that the risk scores between the wild types and the mutation types of TP53, MUC16, RB1, and FGFR3 were significantly different. Gene-Set Enrichment Analysis (GSEA) showed that immune or cancer-associated pathways belonged to the high-risk groups and metabolism-related signal pathways were enriched into the low-risk group. Finally, we constructed a predictive model with risk score, age, and stage and validated its performance in GEO datasets.ConclusionWe successfully constructed and validated a novel hypoxia signature in bladder cancer, which could accurately predict patients’ prognosis.


2021 ◽  
Author(s):  
Liusheng Wu ◽  
Xiaoqiang Li ◽  
Jixian Liu ◽  
Da Wu ◽  
Dingwang Wu ◽  
...  

Abstract Objective: Autophagy-related LncRNA genes play a vital role in the development of esophageal adenocarcinoma.Our study try to construct a prognostic model of autophagy-related LncRNA esophageal adenocarcinoma, and use this model to calculate patients with esophageal adenocarcinoma. The survival risk value of esophageal adenocarcinoma can be used to evaluate its survival prognosis. At the same time, to explore the sites of potential targeted therapy genes to provide valuable guidance for the clinical diagnosis and treatment of esophageal adenocarcinoma.Methods: Our study have downloaded 261 samples of LncRNA-related transcription and clinical data of 87 patients with esophageal adenocarcinoma from the TCGA database, and 307 autophagy-related gene data from www.autuphagy.com. We applied R software (Version 4.0.2) for data analysis, merged the transcriptome LncRNA genes, autophagy-related genes and clinical data, and screened autophagy LncRNA genes related to the prognosis of esophageal adenocarcinoma. We also performed KEGG and GO enrichment analysis and GSEA enrichment analysis in these LncRNA genes to analysis the risk characteristics and bioinformatics functions of signal transduction pathways. Univariate and multivariate Cox regression analysis were used to determine the correlation between autophagy-related LncRNA and independent risk factors. The establishment of ROC curve facilitates the evaluation of the feasibility of predicting prognostic models, and further studies the correlation between autophagy-related LncRNA and the clinical characteristics of patients with esophageal adenocarcinoma. Finally, we also used survival analysis, risk analysis and independent prognostic analysis to verify the prognosis model of esophageal adenocarcinoma.Results: We screened and identified 22 autophagic LncRNA genes that are highly correlated with the overall survival (OS) of patients with esophageal adenocarcinoma. The area under the ROC curve(AUC=0.941)and the calibration curve have a good lineup, which has statistical analysis value. In addition, univariate and multivariate Cox regression analysis showed that the autophagy LncRNA feature of this esophageal adenocarcinoma is an independent predictor of esophageal adenocarcinoma.Conclusion: These LncRNA screened and identified may participate in the regulation of cellular autophagy pathways, and at the same time affect the tumor development and prognosis of patients with esophageal adenocarcinoma. These results indicate that risk signature and nomogram are important indicators related to the prognosis of patients with esophageal adenocarcinoma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kebing Huang ◽  
Xiaoyu Yue ◽  
Yinfei Zheng ◽  
Zhengwei Zhang ◽  
Meng Cheng ◽  
...  

Glioma is well known as the most aggressive and prevalent primary malignant tumor in the central nervous system. Molecular subtypes and prognosis biomarkers remain a promising research area of gliomas. Notably, the aberrant expression of mesenchymal (MES) subtype related long non-coding RNAs (lncRNAs) is significantly associated with the prognosis of glioma patients. In this study, MES-related genes were obtained from The Cancer Genome Atlas (TCGA) and the Ivy Glioblastoma Atlas Project (Ivy GAP) data sets of glioma, and MES-related lncRNAs were acquired by performing co-expression analysis of these genes. Next, Cox regression analysis was used to establish a prognostic model, that integrated ten MES-related lncRNAs. Glioma patients in TCGA were divided into high-risk and low-risk groups based on the median risk score; compared with the low-risk groups, patients in the high-risk group had shorter survival times. Additionally, we measured the specificity and sensitivity of our model with the ROC curve. Univariate and multivariate Cox analyses showed that the prognostic model was an independent prognostic factor for glioma. To verify the predictive power of these candidate lncRNAs, the corresponding RNA-seq data were downloaded from the Chinese Glioma Genome Atlas (CGGA), and similar results were obtained. Next, we performed the immune cell infiltration profile of patients between two risk groups, and gene set enrichment analysis (GSEA) was performed to detect functional annotation. Finally, the protective factors DGCR10 and HAR1B, and risk factor SNHG18 were selected for functional verification. Knockdown of DGCR10 and HAR1B promoted, whereas knockdown of SNHG18 inhibited the migration and invasion of gliomas. Collectively, we successfully constructed a prognostic model based on a ten MES-related lncRNAs signature, which provides a novel target for predicting the prognosis for glioma patients.


2021 ◽  
pp. 153537022110535
Author(s):  
Nan Li ◽  
Kai Yu ◽  
Zhong Lin ◽  
Dingyuan Zeng

Uterine corpus endometrial carcinoma (UCEC) is the third most frequent gynecological malignancies in the female reproductive system. Long non-coding RNAs (lncRNAs) are closely involved in tumor progression. This study aimed to develop an immune subtyping system and a prognostic model based on lncRNAs for UCEC. Paired lncRNAs and non-negative matrix factorization were applied to identify immune subtypes. Enrichment analysis was conducted to assess functional pathways, immune-related genes, and cells. Univariate and multivariate Cox regression analysis were performed to analyze the relation between lncRNAs and overall survival (OS). A prognostic model was constructed and optimized by least absolute shrinkage and selection operator (LASSO) and Akaike information criterion (AIC). Two immune subtypes (C1 and C2) and four paired-prognostic lncRNAs closely associated with overall survival were identified. Some immune features, sensitivity of chemotherapy and immunotherapy, and the relation with immune escape showed variations between two subtypes. A nomogram established based on prognostic model and clinical features was effective in OS prediction. The immune subtyping system based on lncRNAs and the four-paired-lncRNA signature was predictive of UCEC prognosis and can facilitate personalized therapies such as immunotherapy or RNA-based therapy for UCEC patients.


Sign in / Sign up

Export Citation Format

Share Document