scholarly journals The Origins and Generation of Cancer-Associated Mesenchymal Stromal Cells: An Innovative Therapeutic Target for Solid Tumors

2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Li ◽  
Jin Yang ◽  
Ping Zheng ◽  
Haining Li ◽  
Shaolin Zhao

Cancer-associated mesenchymal stromal cells (CA-MSCs) have been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. However, very little is known about the origins and generating process of CA-MSCs, which may facilitate the identification of biomarkers for diagnosis or innovative targets for anti-cancer therapy to restrain the tumor growth, spread and chemotherapy resistance. Current evidences have indicated that both distally recruited and local resident MSCs are the primary origins of CA-MSCs. In a tissue type-dependent mode, tumor cells together with the TME components prompt the malignant transition of tumor “naïve” MSCs into CA-MSCs in a direct cell-to-cell contact, paracrine or exosome-mediated manner. In this review, we discuss the transition of phenotypes and functions of naïve MSCs into CA-MSCs influenced by tumor cells or non-tumor cells in the TME. The key areas remaining poorly understood are also highlighted and concluded herein.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Guoping Zheng ◽  
Menghua Ge ◽  
Guanguan Qiu ◽  
Qiang Shu ◽  
Jianguo Xu

Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-αstimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models.


Cytotherapy ◽  
2016 ◽  
Vol 18 (7) ◽  
pp. 860-869 ◽  
Author(s):  
Zhengqiang Yuan ◽  
Sofia Da Silva Lourenco ◽  
Elizabeth K. Sage ◽  
Krishna K. Kolluri ◽  
Mark W. Lowdell ◽  
...  

Cytotherapy ◽  
2016 ◽  
Vol 18 (11) ◽  
pp. 1435-1445 ◽  
Author(s):  
Elizabeth K. Sage ◽  
Ricky M. Thakrar ◽  
Sam M. Janes

PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e28321 ◽  
Author(s):  
Augusto Pessina ◽  
Arianna Bonomi ◽  
Valentina Coccè ◽  
Gloria Invernici ◽  
Stefania Navone ◽  
...  

2013 ◽  
pp. 187-202
Author(s):  
Augusto Pessina ◽  
Arianna Bonomi ◽  
Eugenio Parati ◽  
Roberto Pallini ◽  
Giulio Alessandri

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 480 ◽  
Author(s):  
Jana Plava ◽  
Marina Cihova ◽  
Monika Burikova ◽  
Martin Bohac ◽  
Marian Adamkov ◽  
...  

During cancer progression, breast tumor cells interact with adjacent adipose tissue, which has been shown to be engaged in cancer aggressiveness. However, the tumor-directed changes in adipose tissue-resident stromal cells affected by the tumor–stroma communication are still poorly understood. The acquired changes might remain in the tissue even after tumor removal and may contribute to tumor relapse. We investigated functional properties (migratory capacity, expression and secretion profile) of mesenchymal stromal cells isolated from healthy (n = 9) and tumor-distant breast adipose tissue (n = 32). Cancer patient-derived mesenchymal stromal cells (MSCs) (MSC-CA) exhibited a significantly disarranged secretion profile and proliferation potential. Co-culture with MDA-MB-231, T47D and JIMT-1, representing different subtypes of breast cancer, was used to analyze the effect of MSCs on proliferation, invasion and tumorigenicity. The MSC-CA enhanced tumorigenicity and altered xenograft composition in immunodeficient mice. Histological analysis revealed collective cell invasion with a specific invasive front of EMT-positive tumor cells as well as invasion of cancer cells to the nerve-surrounding space. This study identifies that adipose tissue-derived mesenchymal stromal cells are primed and permanently altered by tumor presence in breast tissue and have the potential to increase tumor cell invasive ability through the activation of epithelial-to-mesenchymal transition in tumor cells.


Oral Oncology ◽  
2015 ◽  
Vol 51 (5) ◽  
pp. e35
Author(s):  
P. Dissmann ◽  
B. Kansy ◽  
K. Bruderek ◽  
C. Dumitru ◽  
S. Lang ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5678-5678
Author(s):  
Ying Xu ◽  
Ya Gao ◽  
Yan chun Yang ◽  
Dongmao Zhu ◽  
Yintian Zhang ◽  
...  

Abstract Objective Mesenchymal stromal cells (MSCs) have been used in preventing and treating acute graft-versus-host disease (aGVHD), but the mechanism is not fully understood. Apoptotic bone marrow mesenchymal stromal cells (BMSCs) were showed could induce vivo recipient-mediated immunomodulation in mice GVHD model. We had demonstrated that, similar to BM-MSCs, human amniontic mesenchymal stromal cells (hAMSCs) exhibit potent immunosuppressive and anti-inflammatory activities but possess a higher proliferation activity and clearer stem cell properties in vitro. This study focuses on the immunoregulatory properties of apoptotic human amniontic mesenchymal stromal cells (apo-hAMSCs) in an inflammatory microenvironment. Methods hAMSCs from human amniotic membrane were cultured with tissue mass cell culture. The cell phenotype of the 3rd passage were detected by flow cytometry. Transwell co-culture experiments and cell-cell contact co-culture experiments were conducted, consisting of hAMSCs and peripheral blood mononuclear cells stimulated with phytohemagglutinin (PHA-PBMCs), as the positive control group. While other groups were PBMCs without PHA and hAMSCs(PBMCs+hAMSCs), PBMCs and PHA (PHA-PBMCs), hAMSCs and PBMCs. For apoptosis evalution, the morphological features of hAMSCs were recorded in different groups, and apo-hAMSCs were analyzed by flow cytometry at 24 hours. The production of Interferon-γ (IFN-γ), transforming growth factor-β1 (TGF-β1), prostaglandin E2 (PGE-2), soluble human leukocyte antigen G (sHLA-G), Tumor necrosis factor-α(TNF-α) and interleukin-17A (IL-17A) in the co-culture supernatant was detected using enzyme-linked immunosorbent assay (ELISA), and kynurenine were dectected by spectrophotometer. CD4+CD25+FOXP3+ regulatory T cells (Tregs) in PBMC were analyaed by flow cytometry. Result hAMSCs expressed CD105, CD73, CD90, while not CD19, CD34, CD45, CD11b, HLA-DR. In the group of hAMSCs and PHA-PBMCs, the number of hAMSCs reduced. The morphological features were that cells shrinked, turned round, separated from the bottle and suspended in supernatant. However, hAMSCs in the groups of hAMSCs+PBMCs and hAMSCs stayed the same. Apoptosis in hAMSCs cultivated with PHA-PBMCs via transwell or cell-cell contact experiment increased compared with the group of hAMSCs+PBMCs (P<0.05) and hAMSCs (P<0.05). In the two co-culture experments, the secretion level of PGE-2, TGF-β1, sHLA-G, and KYN significantly increased in hAMSCs with PHA-PBMCs compared with hAMSC (P<0.05) and hAMSCs with PBMCs (P<0.05). The level of IFN-γ and TNF-α decreased in hAMSCs with PHA-PBMCs compared with PBMCs with PHA (P<0.05). While the level of IL-17A was significantly increase in hAMSCs with PHA-PBMCs compared with hAMSCs (P<0.05), hAMSCs with PBMCs (P<0.05) and PHA-PBMCs (P>0.05). Evident difference of CD4+CD25+FOXP3+ Tregs was shown between hAMSCs with PHA-PBMCs and PHA-PBMCs (P<0.05). Conclusion Activated, but not resting, PBMCs induce extensive early apoptosis in hAMSCs. And apoptosis in hAMSCs need inflammatory microenvirenment. Apoptotic hAMSCs still have immunoregulatory effects in cytokines and immune cells. Funding This work was supported by Natural Science Foundation of China (81701243), Key Sci-Tech Research Projects of Guangdong Province (2014A02021102), Natural Science Foundation of Guangdong Province, China (2014A030310373), the Pearl River S&T Nova Program of Guangzhou (201710010047). Disclosures No relevant conflicts of interest to declare.


Author(s):  
Panagiotis Mallis ◽  
Efstathios Michalopoulos ◽  
Theofanis Chatzistamatiou ◽  
Catherine Stavropoulos Giokas

Mesenchymal stromal cells (MSCs) are a mesodermal stem cell population, with known self-renewal and multilineage differentiation properties. In the last century, MSCs have been widely used in regenerative medicine and tissue engineering approaches. MSCs initially were isolated from bone marrow aspirates, but currently have been identified in a great number of tissues of the human body. Besides their utilization in regenerative medicine, MSCs possess significant immunoregulatory/immunosuppressive properties, through interaction with the cells of innate and adaptive immunity. MSCs can exert their immunomodulatory properties with either cell-cell contact or via paracrine secretion of molecules, such as cytokines, growth factors and chemokines. Of particular importance, the MSCs’ immunomodulatory properties are explored as promising therapeutic strategies in immune-related disorders, such as autoimmune diseases, graft versus host disease, cancer. MSCs may also have an additional impact on coronavirus disease-19 (COVID-19), by attenuating the severe symptoms of this disorder. Nowadays, a great number of clinical trials, of MSC-mediated therapies are evaluated for their therapeutic potential. In this review, the current knowledge on cellular and molecular mechanisms involved in MSC-mediated immunomodulation were highlighted. Also, the most important aspects, regarding their potential application in immune-related diseases, will be highlighted. The broad application of MSCs has emerged their role as key immunomodulatory players, therefore their utilization in many disease situations is full of possibilities for future clinical treatment.


Sign in / Sign up

Export Citation Format

Share Document