scholarly journals The Hippo Signaling Pathway: The Trader of Tumor Microenvironment

2021 ◽  
Vol 11 ◽  
Author(s):  
Duo Yang ◽  
Na Zhang ◽  
Meihua Li ◽  
Tao Hong ◽  
Wei Meng ◽  
...  

The Hippo pathway regulates cancer biology in many aspects and the crosstalk with other pathways complicates its role. Accumulated evidence has shown that the bidirectional interactions between tumor cells and tumor microenvironment (TME) are the premises of tumor occurrence, development, and metastasis. The relationship among different components of the TME constitutes a three-dimensional network. We point out the core position of the Hippo pathway in this network and discuss how the regulatory inputs cause the chain reaction of the network. We also discuss the important role of Hippo-TME involvement in cancer treatment.

2020 ◽  
Vol 35 (1_suppl) ◽  
pp. 8-11 ◽  
Author(s):  
Paola Nisticò ◽  
Gennaro Ciliberto

Our view of cancer biology radically shifted from a “cancer-cell-centric” vision to a view of cancer as an organ disease. The concept that genetic and/or epigenetic alterations, at the basis of cancerogenesis, are the main if not the exclusive drivers of cancer development and the principal targets of therapy, has now evolved to include the tumor microenvironment in which tumor cells can grow, proliferate, survive, and metastasize only within a favorable environment. The interplay between cancer cells and the non-cellular and cellular components of the tumor microenvironment plays a fundamental role in tumor development and evolution both at the primary site and at the level of metastasis. The shape of the tumor cells and tumor mass is the resultant of several contrasting forces either pro-tumoral or anti-tumoral which have at the level of the tumor microenvironment their battle field. This crucial role of tumor microenvironment composition in cancer progression also dictates whether immunotherapy with immune checkpoint inhibitor antibodies is going to be efficacious. Hence, tumor microenvironment deconvolution has become of great relevance in order to identify biomarkers predictive of efficacy of immunotherapy. In this short paper we will briefly review the relationship between inflammation and cancer, and will summarize in 10 short points the key concepts learned so far and the open challenges to be solved.


2021 ◽  
Vol 134 (6) ◽  
pp. jcs247866
Author(s):  
Srividya Venkatramanan ◽  
Consuelo Ibar ◽  
Kenneth D. Irvine

ABSTRACTHippo signaling mediates influences of cytoskeletal tension on organ growth. TRIP6 and LIMD1 have each been identified as being required for tension-dependent inhibition of the Hippo pathway LATS kinases and their recruitment to adherens junctions, but the relationship between TRIP6 and LIMD1 was unknown. Using siRNA-mediated gene knockdown, we show that TRIP6 is required for LIMD1 localization to adherens junctions, whereas LIMD1 is not required for TRIP6 localization. TRIP6, but not LIMD1, is also required for the recruitment of vinculin and VASP to adherens junctions. Knockdown of TRIP6 or vinculin, but not of LIMD1, also influences the localization of myosin and F-actin. In TRIP6 knockdown cells, actin stress fibers are lost apically but increased basally, and there is a corresponding increase in the recruitment of vinculin and VASP to basal focal adhesions. Our observations identify a role for TRIP6 in organizing F-actin and maintaining tension at adherens junctions that could account for its influence on LIMD1 and LATS. They also suggest that focal adhesions and adherens junctions compete for key proteins needed to maintain attachments to contractile F-actin.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2438 ◽  
Author(s):  
Sahar Sarmasti Emami ◽  
Derek Zhang ◽  
Xiaolong Yang

The Hippo pathway is an emerging tumor suppressor signaling pathway involved in a wide range of cellular processes. Dysregulation of different components of the Hippo signaling pathway is associated with a number of diseases including cancer. Therefore, identification of the Hippo pathway regulators and the underlying mechanism of its regulation may be useful to uncover new therapeutics for cancer therapy. The Hippo signaling pathway includes a set of kinases that phosphorylate different proteins in order to phosphorylate and inactivate its main downstream effectors, YAP and TAZ. Thus, modulating phosphorylation and dephosphorylation of the Hippo components by kinases and phosphatases play critical roles in the regulation of the signaling pathway. While information regarding kinase regulation of the Hippo pathway is abundant, the role of phosphatases in regulating this pathway is just beginning to be understood. In this review, we summarize the most recent reports on the interaction of phosphatases and the Hippo pathway in tumorigenesis. We have also introduced challenges in clarifying the role of phosphatases in the Hippo pathway and future direction of crosstalk between phosphatases and the Hippo pathway.


2015 ◽  
Vol 112 (4) ◽  
pp. 1065-1070 ◽  
Author(s):  
Xianjue Ma ◽  
Yujun Chen ◽  
Wenyan Xu ◽  
Nana Wu ◽  
Maoquan Li ◽  
...  

The Hippo and c-Jun N-terminal kinase (JNK) pathway both regulate growth and contribute to tumorigenesis when dysregulated. Whereas the Hippo pathway acts via the transcription coactivator Yki/YAP to regulate target gene expression, JNK signaling, triggered by various modulators including Rho GTPases, activates the transcription factors Jun and Fos. Here, we show that impaired Hippo signaling induces JNK activation through Rho1. Blocking Rho1–JNK signaling suppresses Yki-induced overgrowth in the wing disk, whereas ectopic Rho1 expression promotes tissue growth when apoptosis is prohibited. Furthermore, Yki directly regulates Rho1 transcription via the transcription factor Sd. Thus, our results have identified a novel molecular link between the Hippo and JNK pathways and implicated the essential role of the JNK pathway in Hippo signaling-related tumorigenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vikrant Borse ◽  
Matthew Barton ◽  
Harry Arndt ◽  
Tejbeer Kaur ◽  
Mark E. Warchol

AbstractThe Hippo signaling pathway is a key regulator of tissue development and regeneration. Activation of the Hippo pathway leads to nuclear translocation of the YAP1 transcriptional coactivator, resulting in changes in gene expression and cell cycle entry. Recent studies have demonstrated the nuclear translocation of YAP1 during the development of the sensory organs of the inner ear, but the possible role of YAP1 in sensory regeneration of the inner ear is unclear. The present study characterized the cellular localization of YAP1 in the utricles of mice and chicks, both under normal conditions and after HC injury. During neonatal development, YAP1 expression was observed in the cytoplasm of supporting cells, and was transiently expressed in the cytoplasm of some differentiating hair cells. We also observed temporary nuclear translocation of YAP1 in supporting cells of the mouse utricle after short periods in organotypic culture. However, little or no nuclear translocation of YAP1 was observed in the utricles of neonatal or mature mice after ototoxic injury. In contrast, substantial YAP1 nuclear translocation was observed in the chicken utricle after streptomycin treatment in vitro and in vivo. Together, these data suggest that differences in YAP1 signaling may partially account for the differing regenerative abilities of the avian vs. mammalian inner ear.


2021 ◽  
Author(s):  
Francesco M Piccolo ◽  
Nathaniel R Kastan ◽  
Tomomi Haremaki ◽  
Qingyun Tian ◽  
Tiago L Laundos ◽  
...  

The Hippo pathway, a highly conserved signaling cascade that functions as an integrator of molecular signals and biophysical states, ultimately impinges upon the transcription coactivator Yes-associated protein 1 (YAP). Hippo-YAP signaling has been shown to play key roles both at the early embryonic stages of implantation and gastrulation, and later during neurogenesis. To explore YAP potential role in neurulation, we used self-organizing neuruloids grown from human embryonic stem cells on micropatterned substrates. We identified YAP activation as a key lineage determinant, first between neuronal ectoderm and non-neuronal ectoderm, and later between epidermis and neural crest, indicating that YAP activity can enhance the effect of BMP4 stimulation and therefore affect ectodermal specification at this developmental stage. Because aberrant Hippo-YAP signaling has been implicated in the pathology of Huntington Disease (HD), we used isogenic mutant neuruloids to explore the relationship between signaling and the disease. We found that HD neuruloids demonstrate ectopic activation of gene targets of YAP and that pharmacological reduction of YAP transcriptional activity can partially rescue the HD phenotype.


2018 ◽  
Author(s):  
Michele R. Plewes ◽  
Xiaoying Hou ◽  
Pan Zhang ◽  
Jennifer Wood ◽  
Andrea Cupp ◽  
...  

ABSTRACTYes-associated protein (YAP) is one of the major components of the Hippo signaling pathway, also known as the Salvador/Warts/Hippo (SWH) pathway. Although the exact extracellular signal that controls the Hippo pathway is currently unknown, increasing evidence supports a critical role of the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. The ovary is one of few adult tissues that exhibit cyclical changes. Ovarian follicles, the basic units of ovary, are composed of a single oocyte surrounded by expanding layers of granulosa and theca cells. Granulosa cells (GCs) produce sex steroids and growth factors, which facilitate the development of the follicle and maturation of the oocyte. It has been reported that YAP is highly expressed in human GC tumors, but the role of YAP in normal ovarian follicle development is largely unknown. In current study, we examined YAP expression in bovine ovaries. We demonstrate that downstream hippo signaling effector protein, YAP and transcription co-activator, TAZ, are present and localization of both YAP and TAZ are density-dependent. Likewise, YAP and TAZ are critically involved in granulosa cell proliferation. Furthermore, reducing YAP in granulosa cells inhibits FSH-induced aromatase expression and estradiol biosynthesis. The data suggest that YAP plays an important role in the development of ovarian follicles and estradiol synthesis, which are necessary for maintaining normal ovarian function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manu Unni ◽  
Puli Chandramouli Reddy ◽  
Mrinmoy Pal ◽  
Irit Sagi ◽  
Sanjeev Galande

The Hippo signaling pathway has been shown to be involved in regulating cellular identity, cell/tissue size maintenance and mechanotransduction. The Hippo pathway consists of a kinase cascade which determines the nucleo-cytoplasmic localization of YAP in the cell. YAP is the effector protein in the Hippo pathway, which acts as a transcriptional cofactor for TEAD. Phosphorylation of YAP upon activation of the Hippo pathway prevents it from entering the nucleus and abrogates its function in the transcription of the target genes. In Cnidaria, the information on the regulatory roles of the Hippo pathway is virtually lacking. Here, we report the existence of a complete set of Hippo pathway core components in Hydra for the first time. By studying their phylogeny and domain organization, we report evolutionary conservation of the components of the Hippo pathway. Protein modelling suggested the conservation of YAP-TEAD interaction in Hydra. Further, we characterized the expression pattern of the homologs of yap, hippo, mob and sav in Hydra using whole-mount RNA in situ hybridization and report their possible role in stem cell maintenance. Immunofluorescence assay revealed that Hvul_YAP expressing cells occur in clusters in the body column and are excluded in the terminally differentiated regions. Actively proliferating cells marked by Ki67 exhibit YAP colocalization in their nuclei. Strikingly, a subset of these colocalized cells is actively recruited to the newly developing bud. Disruption of the YAP-TEAD interaction increased the budding rate indicating a critical role of YAP in regulating cell proliferation in Hydra. Collectively, we posit that the Hippo pathway is an essential signaling system in Hydra; its components are ubiquitously expressed in the Hydra body column and play a crucial role in Hydra tissue homeostasis.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 184
Author(s):  
Konstantin Masliantsev ◽  
Lucie Karayan-Tapon ◽  
Pierre-Olivier Guichet

The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis.


2018 ◽  
Vol 115 (9) ◽  
pp. 2150-2155 ◽  
Author(s):  
Xianjue Ma ◽  
Xiaowei Guo ◽  
Helena E. Richardson ◽  
Tian Xu ◽  
Lei Xue

The Hippo signaling pathway is a master regulator of organ growth, tissue homeostasis, and tumorigenesis. The activity of the Hippo pathway is controlled by various upstream components, including Expanded (Ex), but the precise molecular mechanism of how Ex is regulated remains poorly understood. Here we identify Plenty of SH3s (POSH), an E3 ubiquitin ligase, as a key component of Hippo signaling in Drosophila. POSH overexpression synergizes with loss of Kibra to induce overgrowth and up-regulation of Hippo pathway target genes. Furthermore, knockdown of POSH impedes dextran sulfate sodium-induced Yorkie-dependent intestinal stem cell renewal, suggesting a physiological role of POSH in modulating Hippo signaling. Mechanistically, POSH binds to the C-terminal of Ex and is essential for the Crumbs-induced ubiquitination and degradation of Ex. Our findings establish POSH as a crucial regulator that integrates the signal from the cell surface to negatively regulate Ex-mediated Hippo activation in Drosophila.


Sign in / Sign up

Export Citation Format

Share Document