scholarly journals A Novel miR-98 Negatively Regulates the Resistance of Endometrial Cancer Cells to Paclitaxel by Suppressing ABCC10/MRP-7

2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Huang ◽  
Jun Zhang ◽  
Biao Dong ◽  
Haiting Chen ◽  
Liwei Shao ◽  
...  

Endometrial cancer (EC) is one of the most frequent gynecological tumors, and chemoresistance is a major obstacle to improving the prognosis of EC patients. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have recently emerged as crucial chemoresistance regulators that alter the levels of downstream target genes. Multidrug Resistance Protein 7 (MRP-7/ABCC10) is an ATP-binding cassette transporter that causes the resistance to anti-cancer drugs. The purpose of this research is to determine whether MRP-7 has a role in mediating the sensitivity of EC cells to paclitaxel and whether the expression of MRP-7 is regulated by miR-98 and lncRNA NEAT1. We reported that the levels of MRP-7 were significantly increased in EC tissues and associated with an unfavorable prognosis. Downregulation of MRP-7 in EC cells sensitized these cells to paclitaxel and reduced cell invasion. PLAUR serves as a downstream molecule of MRP-7 and facilitates paclitaxel resistance and EC cell invasiveness. Moreover, miR-98 serves as a tumor suppressor to inhibit MRP-7 expression, leading to the repression of paclitaxel resistance. Furthermore, a novel lncRNA, NEAT1, was identified as a suppressor of miR-98, and NEAT1 could upregulate MRP-7 levels by reducing the expression of miR-98. Taken together, these findings demonstrate that upregulation of MRP-7 and NEAT1, and downregulation of miR-98 have important roles in conferring paclitaxel resistance to EC cells. The modulation of these molecules may help overcome the chemoresistance against paclitaxel in EC cells.

2020 ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background: Endometrial cancer is one of the most common cancers affecting women's health. The pathogenesis of endometrial cancer involves many signaling pathways which are related with transcription factors or microRNAs. Recent studies have reported that endometrial cancer is also related with the sexual-mediated hormones. The purpose of this research is to treat the endometrial cancer with the hormone-related drugs, and find out the specific molecular mechanism. Methods: In this study, RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. miR-492 was transfected into RL95-2 cells and Ishikawa cells. The miRNA expression was measured by qRT-PCR. The protein expression was measured by western blot. Cell proliferation was monitored using the MTT assay and cell colony formation assay. Cell apoptosis was monitored using EdU assay. Results: Firstly, the results indicated that metapristone as a kind of hormone-related drugs could significantly inhibit the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Meanwhile, miR-492 was detected to be highly expressed in the endometrial cancer cell lines. Overexpression of miR-492 could promote the cell proliferation and inhibit the cell apoptosis. Furthermore, the results demonstrated that the downstream target genes of miR-492 were Klf5 and Nrf1, which were inhibited by metapristone. At the animal level, metapristone also inhibited the endometrial cancer cell growth through down-regulating the expression of miR-492 and decreasing the protein level of Klf5 and Nrf1. Conclusion: Taken together, this study indicated that metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis related signaling pathway and the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


2020 ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background: Endometrial cancer is the prevalent invasive gynecological cancer in the world. The pathogenesis of endometrial cancer involves many signaling pathways which are related with transcription factors or microRNAs. Metapristone is a hormone related drug and widely used in endometrial cancer clinical therapeutics. However, the deep regulatory mechanism of metapristone is not clear. In this research, we aimed to figure out the specific molecular mechanism during the treatment of endometrial cancer with metapristone.Methods: In this study, RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. miR-492 was transfected into RL95-2 cells and Ishikawa cells. The miRNA expression was measured by qRT-PCR. Moreover, the mice tumor model was used to confirm the function of metapristone and the regulating process by miR-492/Klf5/Nrf1 axis in vivo. The protein expression was measured by western blot. Cell proliferation and apoptosis was monitored using the MTT assay, cell colony formation assay and EdU assay.Results: Firstly, the results indicated that metapristone as a kind of hormone-related drugs could significantly inhibit the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Meanwhile, miR-492 was detected to be highly expressed in the endometrial cancer cell lines. Overexpression of miR-492 could promote the cell proliferation and inhibit the cell apoptosis. Furthermore, the results demonstrated that the downstream target genes of miR-492 were Klf5 and Nrf1, which were inhibited by metapristone. At the animal level, metapristone also inhibited the endometrial cancer cell growth through down-regulating the expression of miR-492 and decreasing the protein level of Klf5 and Nrf1. Conclusion: Taken together, this study indicated that metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis related signaling pathway and the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


2020 ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background: Endometrial cancer is an invasive gynecological cancer prevalent in the world. The pathogenesis of endometrial cancer is related to multiple levels of regulation, referring to oestrogen, tumor-suppressor gene (e.g. PTEN ) or microRNAs (e.g. miR-23a and miR-29b). Metapristone is a hormone-related drug, which is widely used in clinical treatment of endometrial cancer. However, the underlying regulatory mechanism of metapristone on endometrial cancer is still unclear, especially the regulatory effect on microRNAs. The aim of this study is to investigate the specific molecular mechanism of metapristone regulating microRNAs in the treatment of endometrial cancer. Methods: RL95-2 cells and Ishikawa cells were used as the endometrial cancer models. MiR-492 or si-miR-492 was transfected into RL95-2 cells and Ishikawa cells to explore the role of miR-492 in endometrial cancer. The cell cancer model and mice cancer model were used to confirm the function and mechanism of metapristone affected on endometrial cancer in vitro and in vivo . Mechanically, cell proliferation was monitored using the MTT assay, cell colony formation assay and EdU assay. Luciferase reporter assay was used to identify the downstream target gene of miR492. The protein expression and RNA expression were respectively measured by western blot and qRT-PCR for cell signaling pathway research, subsequently, were verified in the mice tumor model via immunohistochemistry. Results: Metapristone as a kind of hormone-related drug significantly inhibited the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Mechanically, miR-492 and its target genes Klf5 and Nrf1 were highly expressed in the endometrial cancer cell lines, which promoted cell proliferation and inhibited cell apoptosis. Metapristone decreased the expression of miR-492 and its target genes Klf5 and Nrf1 , leading to endometrial cancer cell growth inhibition in vitro and in vivo . Conclusion: Metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis-related signaling pathway and decreasing the expression of miR-492 and its downstream target genes ( Klf5 and Nrf1 ), which provided the theoretical basis in clinical treatment of endometrial cancer.


2021 ◽  
Author(s):  
Jing Wang ◽  
Xiaodi Gong ◽  
Linlin Yang ◽  
Lijuan Li ◽  
Xiaoyan Gao ◽  
...  

Abstract Background: Endometrial cancer (EC) patients with lymph node (LN) metastasis have poor prognosis. However, the potential biomarkers that predict LN metastasis and the molecular mechanism of tumor-induced peritumoral lymphangiogenesis have not been well explored. Cancer-secreted exosomal miRNAs are emerging mediators of cell-cell communication in the tumor environment.Methods: Exosomes were isolated with a differential centrifugation method and confirmed by Transmission electron microscopy, NanoSight analysis, and Western blot. MicroRNA (miRNA) sequencing of exosomes derived from EC patients and healthy donors were performed. FISH and qRT-PCR were used to detect the indicated miRNA expression. Exosomal miRNA transferred to cells were confirmed by immunofluorescence and confocal microscope. siRNA and plasmid transfections as well as viral infection were performed to manipulate gene expression. A series of in vitro and in vivo phenotype experiments (tube formation, migration, and popliteal LN metastasis model) were performed to investigate the role of indicated miRNA in EC. RNA sequencing was used to select the underlying transcription factor, and luciferase activity assay and chromatin immunoprecipitation were performed to elucidate the molecular mechanisms. Results: Our data showed that serum exosomal miR-26a-5p was significantly reduced in EC patients, and its level was positively associated with LN metastasis. Loss of miR-26a-5p promoted the migratory and invasive abilities of EC cells, and miR-26a-5p could be transferred from EC cells-secreted exosomes into human lymphatic endothelial cell (HLEC). Mechanistically, miR-26a-5p could regulate LEF1/c-myc/VEGFA axis via binding to its direct downstream target lymphoid enhancer binding factor 1 (LEF1), consequently promoting HLEC tube formation and migration in vitro, facilitating lymphangiogenesis and LN metastasis in vivo. Re-expression and knockdown of LEF1 could respectively promote and rescue the effects induced by exosomal miR-26a-5p. Moreover, we demonstrated that transcriptional factor EB (TFEB) directly induced miR-26a-5p expression.Conclusions: Our results show that exosomal miR-26a-5p/LEF1/c-myc/VEGFA axis is dysregulated and plays a critical role in LN metastasis and exosomal miR-26a-5p may be used as a blood-based biomarker for EC patients with LN metastasis.


2020 ◽  
Author(s):  
Yun Liu ◽  
Yue Chang ◽  
Yixuan Cai

Abstract Background: Endometrial cancer is one of the most common cancers affecting women's health. The pathogenesis of endometrial cancer involves many signaling pathways which are related with transcription factors or microRNAs. Recent studies have reported that endometrial cancer is also related with the sexual-mediated hormones. The purpose of this research is to treat the endometrial cancer with the hormone-related drugs, and find out the specific molecular mechanism. Methods: In this study, RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. miR-492 was transfected into RL95-2 cells and Ishikawa cells. The miRNA expression was measured by qRT-PCR. The protein expression was measured by western blot. Cell proliferation was monitored using the MTT assay and cell colony formation assay. Cell apoptosis was monitored using EdU assay. Results: Firstly, the results indicated that metapristone as a kind of hormone-related drugs could significantly inhibit the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Meanwhile, miR-492 was detected to be highly expressed in the endometrial cancer cell lines. Overexpression of miR-492 could promote the cell proliferation and inhibit the cell apoptosis. Furthermore, the results demonstrated that the downstream target genes of miR-492 were Klf5 and Nrf1, which were inhibited by metapristone. At the animal level, metapristone also inhibited the endometrial cancer cell growth through down-regulating the expression of miR-492 and decreasing the protein level of Klf5 and Nrf1. Conclusion: Taken together, this study indicated that metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis related signaling pathway and the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background Endometrial cancer is an invasive gynecological cancer prevalent in the world. The pathogenesis of endometrial cancer is related to multiple levels of regulation, referring to oestrogen, tumor-suppressor gene (e.g. PTEN) or microRNAs (e.g. miR-23a and miR-29b). Metapristone is a hormone-related drug, which is widely used in clinical treatment of endometrial cancer. However, the underlying regulatory mechanism of metapristone on endometrial cancer is still unclear, especially the regulatory effect on microRNAs. The aim of this study is to investigate the specific molecular mechanism of metapristone regulating microRNAs in the treatment of endometrial cancer. Methods RL95-2 cells and Ishikawa cells were used as the endometrial cancer models. MiR-492 or si-miR-492 was transfected into RL95-2 cells and Ishikawa cells to explore the role of miR-492 in endometrial cancer. The cell cancer model and mice cancer model were used to confirm the function and mechanism of metapristone affected on endometrial cancer in vitro and in vivo. Mechanically, cell proliferation was monitored using MTT assay, cell colony formation assay and EdU assay. Luciferase reporter assay was used to identify the downstream target gene of miR-492. The protein expression and RNA expression were respectively measured by western blot and qRT-PCR for cell signaling pathway research, subsequently, were verified in the mice tumor model via immunohistochemistry. Results Metapristone as a kind of hormone-related drug significantly inhibited the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Mechanically, miR-492 and its target genes Klf5 and Nrf1 were highly expressed in the endometrial cancer cell lines, which promoted cell proliferation and inhibited cell apoptosis. Metapristone decreased the expression of miR-492 and its target genes Klf5 and Nrf1, leading to endometrial cancer cell growth inhibition in vitro and in vivo. Conclusion Metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis-related signaling pathway and decreasing the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis in clinical treatment of endometrial cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Minglin Liang ◽  
Hongbo Wang ◽  
Cong Liu ◽  
Tao Lei ◽  
Jie Min

Abstract Background Endometrial carcinoma (EC) is one common gynecological tumor, threatening physical and psychological health of females. Huge amount of essays indicated that long non-coding RNAs (lncRNAs) were widely reported to serve as a crucial regulator in the biological movements among multiple carcinomas, including EC. Methods RT-qPCR was implemented to detect the expression of target genes. Loss/gain-of-function experiments certified the impacts of OIP5-AS1 and miR-152-3p on EC cell progression. Results Data of this research suggested that powerful expression of OIP5-AS1 was discovered in EC cell lines. Loss/gain-of-function assays inferred that OIP5-AS1 promoted proliferative, migratory and invasive abilities, and Epithelial-Mesenchymal Transition (EMT). In addition, we identified miR-152-3p expression was negatively modulated by OIP5-AS1. OIP5-AS1 accelerated the development of EC cells via downregulating miR-152-3p expression. SLC7A5 was selected out as a downstream target of miR-152-3p. The competing relationship between OIP5-AS1 and SLC7A5 was corroborated by luciferase reporter assay. Eventually, the results of rescue assays indicated that SLC7A5 overexpression could restore the impacts of OIP5-AS1 ablation on the progression of EC cells. Conclusion Our research confirmed that OIP5-AS1 propeled the development of EC cells through targeting miR-152-3p/SLC7A5. OIP5-AS1 could be utilized as a target for EC treatment.


2021 ◽  
Author(s):  
Jin-Kyoung Shim ◽  
Seung Hoon Lim ◽  
Ji Hye Jeong ◽  
Ran Joo Choi ◽  
Yoojung Oh ◽  
...  

Abstract Introduction Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Forkhead Box M1 (FOXM1) has been shown to regulate cell proliferation, apoptosis, angiogenesis, DNA damage repair and tumorigenesis. The lignin, (−)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol (DFS), from Alnus japonica (Betulaceae) has shown anti-cancer effects against colon cancer cells by suppressing FOXM1. However, the efficacy of DFS in GBM has not yet been determined. The present study hypothesized that DFS can have anti-cancer effects against GBM tumorspheres (TSs). Methods Immunoprecipitation and luciferase reporter assays were performed to evaluate the ability of DFS to suppress nuclear translocation of β-catenin through β-catenin/FOXM1 binding. GBM TSs were treated with DFS to assess the ability of DFS to inhibit GBM TSs and to evaluate their transcriptional profiles. The in vivo efficacy of DFS was examined in orthotopic xenograft models of GBM. Results Expression of FOXM1 was higher in GBM than in normal tissues. DFS-induced FOXM1 protein degradation blocked β-catenin translocation into the nucleus and consequently suppressed downstream target genes of FOXM1 pathways. DFS considerably inhibited cell viability and ATP levels in GBM TSs, while increasing the proportion of apoptotic cells. Treatment with DFS also reduced neurosphere formation and the invasive properties of GBM TSs. Transcriptome analyses showed that DFS reduced the activities of transcription factors related to tumorigenesis, stemness, and invasiveness. In addition, DFS significantly inhibited tumor growth and prolonged the survival rate of mice in orthotopic xenograft models of GBM. Conclusions DFS inhibits the proliferation of GBM TSs by suppressing FOXM1. These findings suggest that DFS may be a potential therapeutic agent to treat patients with GBM.


2020 ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background: Endometrial cancer is the prevalent invasive gynecological cancer in the world. The pathogenesis of endometrial cancer involves many signaling pathways which are related with oestrogen, tumor-suppressor gene (e.g. PTEN) or microRNAs (e.g. miR-23a and miR-29b). Metapristone is a hormone-related drug and widely used in endometrial cancer clinical therapeutics. However, the deep regulatory mechanism of metapristone to endometrial cancer is not clear, especially the relationship with microRNAs. In this research, we aimed to figure out the specific molecular mechanism on the regulation of metapristone to microRNAs during the treatment of endometrial cancer.Methods: RL95-2 cells and Ishikawa cells were used as the endometrial cancer cell models. MiR-492 or si-miR-492 was transfected into RL95-2 cells and Ishikawa cells to explore the role of miR-492 in endometrial cancer. Moreover, the mice tumor model was used to confirm the function of metapristone and the regulating process by miR-492/Klf5/Nrf1 axis in vivo. Mechanically, cell proliferation was monitored using the MTT assay, cell colony formation assay and EdU assay. Luciferase reporter assay was used to identify the downstream target gene of miR492. The protein expression and RNA expression were respectively measured by western blot and qRT-PCR for cell signaling pathway research, subsequently, were verified in the mice tumor model via immunohistochemistry.Results: Metapristone as a kind of hormone-related drugs significantly inhibited the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Mechanically, miR-492 and its target genes Klf5 and Nrf1 were highly expressed in the endometrial cancer cell lines, which promoted cell proliferation and inhibited cell apoptosis. Metapristone decreased the expression of miR-492 and its target genes Klf5 and Nrf1, leading to endometrial cancer cell growth inhibition in vitro and in vivo.Conclusion: Metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis-related signaling pathway and inhibiting the expression of miR-492 and its downstream target genes (Klf5 and Nrf1), which provided the theoretical basis of endometrial cancer in clinical treatment.


2021 ◽  
Vol 22 (6) ◽  
pp. 2999
Author(s):  
Benjamin J. Buckley ◽  
Ashna Kumar ◽  
Ashraf Aboelela ◽  
Richard S. Bujaroski ◽  
Xiuju Li ◽  
...  

The K+-sparing diuretic amiloride shows off-target anti-cancer effects in multiple rodent models. These effects arise from the inhibition of two distinct cancer targets: the trypsin-like serine protease urokinase-type plasminogen activator (uPA), a cell-surface mediator of matrix degradation and tumor cell invasiveness, and the sodium-hydrogen exchanger isoform-1 (NHE1), a central regulator of transmembrane pH that supports carcinogenic progression. In this study, we co‑screened our library of 5- and 6-substituted amilorides against these two targets, aiming to identify single-target selective and dual-targeting inhibitors for use as complementary pharmacological probes. Closely related analogs substituted at the 6-position with pyrimidines were identified as dual-targeting (pyrimidine 24 uPA IC50 = 175 nM, NHE1 IC50 = 266 nM, uPA selectivity ratio = 1.5) and uPA-selective (methoxypyrimidine 26 uPA IC50 = 86 nM, NHE1 IC50 = 12,290 nM, uPA selectivity ratio = 143) inhibitors, while high NHE1 potency and selectivity was seen with 5-morpholino (29 NHE1 IC50 = 129 nM, uPA IC50 = 10,949 nM; NHE1 selectivity ratio = 85) and 5-(1,4-oxazepine) (30 NHE1 IC50 = 85 nM, uPA IC50 = 5,715 nM; NHE1 selectivity ratio = 67) analogs. Together, these amilorides comprise a new toolkit of chemotype-matched, non-cytotoxic probes for dissecting the pharmacological effects of selective uPA and NHE1 inhibition versus dual-uPA/NHE1 inhibition.


Sign in / Sign up

Export Citation Format

Share Document