scholarly journals OIP5-AS1 contributes to the development in endometrial carcinoma cells by targeting miR-152-3p to up-regulate SLC7A5

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Minglin Liang ◽  
Hongbo Wang ◽  
Cong Liu ◽  
Tao Lei ◽  
Jie Min

Abstract Background Endometrial carcinoma (EC) is one common gynecological tumor, threatening physical and psychological health of females. Huge amount of essays indicated that long non-coding RNAs (lncRNAs) were widely reported to serve as a crucial regulator in the biological movements among multiple carcinomas, including EC. Methods RT-qPCR was implemented to detect the expression of target genes. Loss/gain-of-function experiments certified the impacts of OIP5-AS1 and miR-152-3p on EC cell progression. Results Data of this research suggested that powerful expression of OIP5-AS1 was discovered in EC cell lines. Loss/gain-of-function assays inferred that OIP5-AS1 promoted proliferative, migratory and invasive abilities, and Epithelial-Mesenchymal Transition (EMT). In addition, we identified miR-152-3p expression was negatively modulated by OIP5-AS1. OIP5-AS1 accelerated the development of EC cells via downregulating miR-152-3p expression. SLC7A5 was selected out as a downstream target of miR-152-3p. The competing relationship between OIP5-AS1 and SLC7A5 was corroborated by luciferase reporter assay. Eventually, the results of rescue assays indicated that SLC7A5 overexpression could restore the impacts of OIP5-AS1 ablation on the progression of EC cells. Conclusion Our research confirmed that OIP5-AS1 propeled the development of EC cells through targeting miR-152-3p/SLC7A5. OIP5-AS1 could be utilized as a target for EC treatment.

2019 ◽  
Vol 39 (10) ◽  
Author(s):  
Ping Chen ◽  
Tianrong Xing ◽  
Qingdong Wang ◽  
Ai Liu ◽  
Haiping Liu ◽  
...  

Abstract Recently, many mircroRNAs (miRNAs) involved in the development and progression of cancer have been reported to regulate cell growth and metastasis, including microRNA-202 (miR-202). The purpose of the present study was to elucidate the effect of miR-202 on endometrial carcinoma (EC) cell migration and invasion. First, qRT-PCR showed that miR-202 was down-regulated in EC tissues, which was associated with poor prognosis in EC patients. Functionally, transwell assay indicated that miR-202 inhibited cell migration and invasion in EC cells. In addition, miR-202 also blocked epithelial–mesenchymal transition (EMT) through suppressing N-cadherin and Vimentin expressions and promoting E-cadherin expression. Moreover, the dual-luciferase reporter assay showed that fibroblast growth factor 2 (FGF2) is a direct target gene for miR-202 in EC cells. Furthermore, up-regulation of FGF2 attenuated the inhibitory effect of miR-202 on cell migration and invasion in EC. Besides that, miR-202 inactivated the Wnt/β-catenin signaling by suppressing β-catenin expression in EC. In conclusion, miR-202 inhibited cell migration and invasion by targeting FGF2 and inactivating the Wnt/β-catenin signaling in EC.


2020 ◽  
Vol 18 ◽  
pp. 205873922095990
Author(s):  
Jingwei Cai ◽  
Xiaohui Chen ◽  
Fei Ma ◽  
Jun Qian ◽  
Ming Niu ◽  
...  

Osteosarcoma (OS) is one of the most common types of malignant tumors characterized by uncontrolled proliferation ability and acquired drug resistance. The previous study indicated that lncRNA KRAL participated in the reversal of 5-FU resistance in liver cancer, but it remains unclear whether lncRNA KRAL involved in doxorubicin (DOX) resistance of osteosarcoma. The expression of lncRNA KRAL and MicroRNAs-141 (miR-141) were detected by RT-qPCR experiment. Also, we used the plasmids transfection to construct the lncRNA KRAL overexpressed OS cell lines. Subsequently, the cell proliferation ability and the sensitivity to DOX in OS cells upon upregulating lncRNA KRAL expression were analyzed via CCK-8 and EDU assay, while western blotting experiment was performed to detect the regulatory mechanism. We found that lncRNA KRAL was downregulated in OS tissues, and the OS patients with OS patients with lower expression of lncRNA KRAL were more likely to have advanced Enneking stage, larger tumor size and distant metastasis. Subsequently, we discovered that upregulation of lncRNA KRAL could inhibit cell proliferation and increase the sensitivity to DOX of OS cells. Interestingly, the western blot results showed that over-expression of lncRNA KRAL could lead to down-expression of P-gp protein and reversal of Epithelial–mesenchymal transition (EMT) pathway. Furthermore, we identified miR-141 as the downstream target gene of lncRNA KRAL, which was further confirmed by the luciferase reporter assay. More importantly, our data demonstrated that addition of miR-141 could reverse cell proliferation and drug sensitivity of lncRNA KRAL-overexpressed OS cells. LncRNA KRAL could suppress cell growth and increases sensitivity to DOX in OS cells by sponging miR-141.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5710
Author(s):  
Xiaohui Zhang ◽  
Tingyu Li ◽  
Ya-Nan Han ◽  
Minghui Ge ◽  
Pei Wang ◽  
...  

Metastasis contributes to the poor prognosis of colorectal cancer, the causative factor of which is not fully understood. Previously, we found that miR-125b (Accession number: MIMAT0000423) contributed to cetuximab resistance in colorectal cancer (CRC). In this study, we identified a novel mechanism by which miR-125b enhances metastasis by targeting cystic fibrosis transmembrane conductance regulator (CFTR) and the tight junction-associated adaptor cingulin (CGN) in CRC. We found that miR-125b expression was upregulated in primary CRC tumors and metastatic sites compared with adjacent normal tissues. Overexpression of miR-125b in CRC cells enhanced migration capacity, while knockdown of miR-125b decreased migration and invasion. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays identified CFTR and CGN as the target genes of miR-125b, and the inhibitory impact of CFTR and CGN on metastasis was further verified both in vitro and in vivo. Moreover, we found that miR-125b facilitated the epithelial-mesenchymal transition (EMT) process and the expression and secretion of urokinase plasminogen activator (uPA) by targeting CFTR and enhanced the Ras Homolog Family Member A (RhoA)/Rho Kinase (ROCK) pathway activity by targeting CGN. Together, these findings suggest miR-125b as a key functional molecule in CRC and a promising biomarker for the diagnosis and treatment of CRC.


2020 ◽  
Author(s):  
Siying He ◽  
Yifang Huang ◽  
Shiqi Dong ◽  
Chen Qiao ◽  
Guohua Yang ◽  
...  

Abstract Background: Recently, it has been reported that miRNA is correlated with pterygium, however its exact mechanism in pterygium is unrevealed and require further investigation. Methods: The differential expression of miRNA in pterygium was profiled using microarray and validated with quantitative real-time PCR (qRT-PCR). Human conjunctival epithelial cells (HCEs) were cultured and treated with TGF-b and EGF. Western blot and immunohistochemistry were carried out to detect epithelial-mesenchymal transition (EMT) markers. Wound healing and transwell assay were used to determine cell migration ability, while apoptosis was determined by flow cytometry. The target genes of miR-199a were confirmed by the dual-luciferase reporter assay. Results: TGF-b and EGF induced EMT in HCEs to mimic the pathogenesis of pterygium. MiR-199a-3p and miR-199a-5p induced EMT in HCEs, whose respectively downstream targets DUSP5 and MAP3K11 hindered EMT in EMT-HCEs in turn. TGF-b and EGF induced EMT promotion and target genes suppression, could be promoted by miR-199a-3p and miR-199a-5p, while impeded by miR-199a-3p and miR-199a-5p inhibitors. The expression levels of miR-199a and target genes were further validated in pterygium tissues, which were consistent the results in cell model. Bioinformatics analysis indicated the miR-199a-3p/5p-DUSP5/MAP3K11 was belong to MAPK signalling pathway in pterygium. Conclusions: TGF-b and EGF probably induced EMT of HCEs through miR-199a-3p/5p-DUSP5/MAP3K11 axis, which explained the pathogenesis of EMT in pterygium and might provide new targets for pterygium prevention and therapy.


Endocrinology ◽  
2010 ◽  
Vol 151 (9) ◽  
pp. 4133-4145 ◽  
Author(s):  
Jian-Zhong Tang ◽  
Xiang-Jun Kong ◽  
Arindam Banerjee ◽  
Nethaji Muniraj ◽  
Vijay Pandey ◽  
...  

We herein demonstrate an oncogenic role for signal transducer and activator of transcription (STAT)-3α (the full length STAT3 isoform), which also mediates autocrine human GH (hGH)-stimulated oncogenicity, in human endometrial carcinoma (EC) cells. Autocrine hGH stimulated Y705 phosphorylation of STAT3 and STAT3-mediated transcriptional activity in a SRC and Janus-2 Kinase dependent manner in human EC cell lines. Forced expression of a constitutively active variant of STAT3α increased proliferation, anchorage-independent, three-dimensional (3D) Matrigel, and xenograft growth and promoted epithelial-mesenchymal transition, migration, and invasion of EC cells. Conversely, the oncogenic capacity of EC cells was significantly impaired by treatment with JSI-124, an inhibitor of STAT3 phosphorylation and activity, small interfering RNA-mediated depletion of STAT3α, or a dominant-negative variant of STAT3α. Furthermore, the enhanced EC cell oncogenicity stimulated by autocrine hGH, was also abrogated by functional inhibition or small interfering RNA-mediated depletion of STAT3α. STAT3α may therefore be a common mediator of oncogenic signaling pathways stimulating progression of EC.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mennatallah Elfar ◽  
Asma Amleh

miRNAs are small non-coding RNA sequences of 18-25 nucleotides. They can regulate different cellular pathways by acting on tumor suppressors, oncogenes, or both. miRNAs are mostly tissue-specific, and their expression varies depending on the cancer or the tissue in which they are found. hsa-miR-590-3p was found to be involved in several types of cancers. In this study, we identified potential downstream target genes of hsa-miR-590-3p computationally. Several bioinformatics tools and more than one approach were used to identify potential downstream target genes of hsa-miR-590-3p. CX3CL1, SOX2, N-cadherin, E-cadherin, and FOXA2 were utilized as potential downstream target genes of hsa-miR-590-3p. SNU449 and HepG2, hepatocellular carcinoma cell lines, were used to carry out various molecular techniques to further validate our in silico results. mRNA and protein expression levels of these genes were detected using RT-PCR and western blotting, respectively. Co-localization of hsa-miR-590-3p and its candidate downstream target gene, SOX2, was carried out using a miRNA in situ hybridization combined with immunohistochemistry staining through anti-SOX2. The results show that there is an inverse correlation between hsa-miR-590-3p expression and SOX2 protein expression in SNU449. Subsequently, we suggest that SOX2 can be a direct downstream target of has-miR-590-3p indicating that it may have a role in the self-renewal and self-maintenance of cancer cells. We also suggest that CX3CL1, E-cadherin, N-cadherin, and FOXA2 show a lot of potential as downstream target genes of hsa-miR-590-3p signifying its role in epithelial-mesenchymal transition. Studying the expression of hsa-miR-590-3p downstream targets can enrich our understanding of the cancer pathogenesis and how it can be used as a therapeutic tool.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Xiaobo Chen ◽  
Hongwen Sun ◽  
Yunping Zhao ◽  
Jing Zhang ◽  
Guosheng Xiong ◽  
...  

AbstractBackgroundThe aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC.MethodsThe protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay.ResultsWe discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities.ConclusionCirc_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.


2020 ◽  
Author(s):  
Siying He ◽  
Yifang Huang ◽  
Shiqi Dong ◽  
Chen Qiao ◽  
Guohua Yang ◽  
...  

Abstract Background Recently, it has been reported that miRNA is involved in pterygium, however the exact underlying mechanism in pterygium is unrevealed and require further investigation. Methods The differential expression of miRNA in pterygium was profiled using microarray and validated with quantitative real-time polymerase chain reaction(qRT-PCR). Human conjunctival epithelial cells (HCEs) were cultured and treated with transforming growth factor β (TGF-β) and epidermal growth factor (EGF) and transfected with miR-199a-3p/5p mimic and inhibitor. Markers of epithelial-mesenchymal transition (EMT) in HCEs were detected using western blot and immunohistochemistry. Cell migration ability was determined using wound healing and transwell assay, while apoptosis was determined by flow cytometry. The target genes of miR-199a were confirmed by the dual-luciferase reporter assay. Results TGF-β and EGF could induced EMT in HCEs and increase miR-199a-3p/5p but suppress target genes, DUSP5 and MAP3K11. With the occurrence of EMT, cell migration ability was enhanced, and apoptosis was impeded. Promoting miR-199a-3p/5p expression could induce EMT in HCEs without TGF-β and EGF, while suppressing miR-199a-3p/5p could inhibit EMT in TGF-β and EGF induced HCEs. In a word, TGF-β and EGF induced EMT could be regulated with miR-199a-3p/5p-DUSP5/MAP3K11 axes. The validated results in tissues showed that, compared with control conjunctival tissues, miR-199a-3p/5p were more overexpressed in pterygium, while DUSP5/MAP3K11 were lower expressed. In addition, bioinformatics analysis indicated the miR-199a-3p/5p-DUSP5/MAP3K11 was belong to MAPK signalling pathway. Conclusions TGF-β and EGF induce EMT of HCEs through miR-199a-3p/5p-DUSP5/MAP3K11 axes, which explains the pathogenesis of EMT in pterygium and may provide new targets for pterygium prevention and therapy.


2021 ◽  
Author(s):  
Xinxue Zhang ◽  
Zhangyong Ren ◽  
Junming Xu ◽  
Qing Chen ◽  
Jun Ma ◽  
...  

Abstract Micro(mi)RNAs play an essential role in the epithelial-mesenchymal transition (EMT) process in human cancers. This study aimed to uncover the regulatory mechanism of miR-1301-3p on EMT in pancreatic cancer (PC). The miRNA profilings from Gene Expression Omnibus datasets (GSE31568, GSE41372, and GSE32688) demonstrated the downregulation of miR-1301-3p in PC tissues, which was validated with 72 paired PC tissue samples through qRT-PCR detection. The low level of miR-1301-3p was associated with a poor prognosis for PC patients from the PC cohort of The Cancer Genome Atlas and the validation cohort. Gene Ontology analyses indicated that the target genes of miR-1301-3p were involved in cell cycle and adherent junction regulation. In vitro assays revealed that miR-1301-3p suppressed the proliferation and migration abilities of PC cells. Western blotting and luciferase reporter assays suggested that miR-1301-3p inhibited RhoA expression by targeting its 3′-untranslated region; RhoA upregulated N-cadherin and vimentin level, however, downregulated E-cadherin level. In conclusion, our study showed that miR-1301-3p could serve as a prognostic biomarker for PC and suppress PC cell malignancy by targeting RhoA induced EMT process.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Jiancai Ouyang ◽  
Fuhu Song ◽  
He Li ◽  
Rui Yang ◽  
Haicheng Huang

The incidence and mortality of gastric cancer have been increasing in recent years. MiR-126 and target genes have been studied in gastric cancer, but their studies with Golgi phosphoprotein 3 (GOLPH3) and related pathways in gastric cancer are rarely reported. In the present study, we aimed to investigate the interaction between the miR-126 and GOLPH3in the progression of gastric cancer. In this study, we revealed the role of miR-126-GOLPH3 axis into regulating the progression of epithelial-mesenchymal transition (EMT) in BGC-823 cell model. Firstly, tumor tissues and adjacent normal tissues were collected from 45 patients with gastric cancer. We found the expression of miR-126 in human tumor tissue was significantly lower than in normal tissue using reverse transcription-polymerase chain reaction (RT-PCR). But the GOLPH3 expression was opposite by the detection of immunohistochemistry, RT-PCR and Western blot. Moreover, we predicted miR-126 targeting GOLPH3 by bioinformatics and confirmed the interaction using luciferase reporter gene system; miR-126 inhibited the proliferation, invasion and EMT progression in BGC-823 cells through overexpressing miR-126; miR-126 negative regulated GOLPH3 expression by overexpressing and interfering miR-126. Finally, we found GOLPH3 could promote proliferation using MTT assay, invasion using Transwell, and EMT progression by inhibiting the expression of E-cadherin, inducing vimentin and N-cadherin in BGC-823 cells. Our results demonstrated that miR-126 inhibits proliferative and invasive ability as well as EMT progression by targeting GOLPH3. This study may provide a new field of vision for targeted treatment of gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document