scholarly journals Identification of Critical Residues in the Carboxy Terminus of the Dopamine Transporter Involved in the G Protein βγ-Induced Dopamine Efflux

2021 ◽  
Vol 12 ◽  
Author(s):  
José A. Pino ◽  
Gabriel Nuñez-Vivanco ◽  
Gabriela Hidalgo ◽  
Miguel Reyes Parada ◽  
Habibeh Khoshbouei ◽  
...  

The dopamine transporter (DAT) plays a crucial role in the regulation of brain dopamine (DA) homeostasis through the re-uptake of DA back into the presynaptic terminal. In addition to re-uptake, DAT is also able to release DA through a process referred to as DAT-mediated DA efflux. This is the mechanism by which potent and highly addictive psychostimulants, such as amphetamine (AMPH) and its analogues, increase extracellular DA levels in motivational and reward areas of the brain. Recently, we discovered that G protein βγ subunits (Gβγ) binds to the DAT, and that activation of Gβγ results in DAT-mediated efflux - a similar mechanism as AMPH. Previously, we have shown that Gβγ binds directly to a stretch of 15 residues within the intracellular carboxy terminus of DAT (residues 582–596). Additionally, a TAT peptide containing residues 582 to 596 of DAT was able to block the Gβγ-induced DA efflux through DAT. Here, we use a combination of computational biology, mutagenesis, biochemical, and functional assays to identify the amino acid residues within the 582–596 sequence of the DAT carboxy terminus involved in the DAT-Gβγ interaction and Gβγ-induced DA efflux. Our in-silico protein-protein docking analysis predicted the importance of F587 and R588 residues in a network of interactions with residues in Gβγ. In addition, we observed that mutating R588 to alanine residue resulted in a mutant DAT which exhibited attenuated DA efflux induced by Gβγ activation. We demonstrate that R588, and to a lesser extent F5837, located within the carboxy terminus of DAT play a critical role in the DAT-Gβγ physical interaction and promotion of DA efflux. These results identify a potential new pharmacological target for the treatment of neuropsychiatric conditions in which DAT functionality is implicated including ADHD and substance use disorder.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3931
Author(s):  
Cong-Peng Zhao ◽  
Guo-Ying Chen ◽  
Yuan Wang ◽  
Hua Chen ◽  
Jia-Wen Yu ◽  
...  

In this study, a polydopamine (PDA)-modified hollow fiber-immobilized xanthine oxidase (XOD) was prepared for screening potential XOD inhibitors from flavonoids. Several parameters for the preparation of PDA-modified hollow fiber-immobilized XOD, including the dopamine concentration, modification time, XOD concentration and immobilization time, were optimized. The results show that the optimal conditions for immobilized XOD activity were a dopamine concentration of 2.0 mg/mL in 10.0 mM Tris-HCl buffer (pH 8.5), a modification time of 3.0 h, an XOD concentration of 1000 μg/mL in 10.0 mM phosphate buffer (pH 7.5) and an immobilization time of 3.0 h. Subsequently, the enzymatic reaction conditions such as the pH value and temperature were investigated, and the enzyme kinetics and inhibition parameters were determined. The results indicate that the optimal pH value (7.5) and temperature (37 °C) of the PDA-modified hollow fiber-immobilized XOD were consistent with the free enzyme. Moreover, the PDA-modified hollow fiber-immobilized XOD could still maintain above 50% of its initial immobilized enzyme activity after seven consecutive cycles. The Michaelis–Menten constant (Km) and the half-maximal inhibitory concentration (IC50) of allopurinol on the immobilized XOD were determined as 0.25 mM and 23.2 μM, respectively. Furthermore, the PDA-modified hollow fiber-immobilized XOD was successfully applied to evaluate the inhibitory activity of eight flavonoids. Quercetin, apigenin, puerarin and epigallocatechin showed a good inhibition effect, and their percentages of inhibition were (79.86 ± 3.50)%, (80.98 ± 0.64)%, (61.15 ± 6.26)% and (54.92 ± 0.41)%, respectively. Finally, molecular docking analysis further verified that these four active compounds could bind to the amino acid residues in the XOD active site. In summary, the PDA-modified hollow fiber-immobilized XOD is an efficient method for the primary screening of XOD inhibitors from natural products.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Lingling Wang ◽  
Jiashen Sun ◽  
Yueyuan Yin ◽  
Yanan Sun ◽  
Jinyi Ma ◽  
...  

AbstractTo support cellular homeostasis and mitigate chemotherapeutic stress, cancer cells must gain a series of adaptive intracellular processes. Here we identify that NUPR1, a tamoxifen (Tam)-induced transcriptional coregulator, is necessary for the maintenance of Tam resistance through physical interaction with ESR1 in breast cancers. Mechanistically, NUPR1 binds to the promoter regions of several genes involved in autophagy process and drug resistance such as BECN1, GREB1, RAB31, PGR, CYP1B1, and regulates their transcription. In Tam-resistant ESR1 breast cancer cells, NUPR1 depletion results in premature senescence in vitro and tumor suppression in vivo. Moreover, enforced-autophagic flux augments cytoplasmic vacuolization in NUPR1-depleted Tam resistant cells, which facilitates the transition from autophagic survival to premature senescence. Collectively, these findings suggest a critical role for NUPR1 as a transcriptional coregulator in enabling endocrine persistence of breast cancers, thus providing a vulnerable diagnostic and/or therapeutic target for endocrine resistance.


2013 ◽  
Vol 454 (3) ◽  
pp. 585-595 ◽  
Author(s):  
Joana Sá-Pessoa ◽  
Sandra Paiva ◽  
David Ribas ◽  
Inês Jesus Silva ◽  
Sandra Cristina Viegas ◽  
...  

In the present paper we describe a new carboxylic acid transporter in Escherichia coli encoded by the gene yaaH. In contrast to what had been described for other YaaH family members, the E. coli transporter is highly specific for acetic acid (a monocarboxylate) and for succinic acid (a dicarboxylate), with affinity constants at pH 6.0 of 1.24±0.13 mM for acetic acid and 1.18±0.10 mM for succinic acid. In glucose-grown cells the ΔyaaH mutant is compromised for the uptake of both labelled acetic and succinic acids. YaaH, together with ActP, described previously as an acetate transporter, affect the use of acetic acid as sole carbon and energy source. Both genes have to be deleted simultaneously to abolish acetate transport. The uptake of acetate and succinate was restored when yaaH was expressed in trans in ΔyaaH ΔactP cells. We also demonstrate the critical role of YaaH amino acid residues Leu131 and Ala164 on the enhanced ability to transport lactate. Owing to its functional role in acetate and succinate uptake we propose its assignment as SatP: the Succinate–Acetate Transporter Protein.


2017 ◽  
Vol 114 (45) ◽  
pp. E9559-E9568 ◽  
Author(s):  
Qing He ◽  
Richard Bouley ◽  
Zun Liu ◽  
Marc N. Wein ◽  
Yan Zhu ◽  
...  

Alterations in the activity/levels of the extralarge G protein α-subunit (XLαs) are implicated in various human disorders, such as perinatal growth retardation. Encoded by GNAS, XLαs is partly identical to the α-subunit of the stimulatory G protein (Gsα), but the cellular actions of XLαs remain poorly defined. Following an initial proteomic screen, we identified sorting nexin-9 (SNX9) and dynamins, key components of clathrin-mediated endocytosis, as binding partners of XLαs. Overexpression of XLαs in HEK293 cells inhibited internalization of transferrin, a process that depends on clathrin-mediated endocytosis, while its ablation by CRISPR/Cas9 in an osteocyte-like cell line (Ocy454) enhanced it. Similarly, primary cardiomyocytes derived from XLαs knockout (XLKO) pups showed enhanced transferrin internalization. Early postnatal XLKO mice showed a significantly higher degree of cardiac iron uptake than wild-type littermates following iron dextran injection. In XLKO neonates, iron and ferritin levels were elevated in heart and skeletal muscle, where XLαs is normally expressed abundantly. XLKO heart and skeletal muscle, as well as XLKO Ocy454 cells, showed elevated SNX9 protein levels, and siRNA-mediated knockdown of SNX9 in XLKO Ocy454 cells prevented enhanced transferrin internalization. In transfected cells, XLαs also inhibited internalization of the parathyroid hormone and type 2 vasopressin receptors. Internalization of transferrin and these G protein-coupled receptors was also inhibited in cells expressing an XLαs mutant missing the Gα portion, but not Gsα or an N-terminally truncated XLαs mutant unable to interact with SNX9 or dynamin. Thus, XLαs restricts clathrin-mediated endocytosis and plays a critical role in iron/transferrin uptake in vivo.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2079 ◽  
Author(s):  
Jinlan Wang ◽  
Zheng Zhang ◽  
Fen Chang ◽  
Deling Yin

Toll-like receptors (TLRs) play important role in the innate immune system. TLR15 is reported to have a unique role in defense against pathogens, but its structural and evolution characterizations are still poorly understood. In this study, we identified 57 completed TLR15 genes from avian and reptilian genomes. TLR15 clustered into an individual clade and was closely related to family 1 on the phylogenetic tree. Unlike the TLRs in family 1 with the broken asparagine ladders in the middle, TLR15 ectodomain had an intact asparagine ladder that is critical to maintain the overall shape of ectodomain. The conservation analysis found that TLR15 ectodomain had a highly evolutionarily conserved region on the convex surface of LRR11 module, which is probably involved in TLR15 activation process. Furthermore, the protein–protein docking analysis indicated that TLR15 TIR domains have the potential to form homodimers, the predicted interaction interface of TIR dimer was formed mainly by residues from the BB-loops andαC-helixes. Although TLR15 mainly underwent purifying selection, we detected 27 sites under positive selection for TLR15, 24 of which are located on its ectodomain. Our observations suggest the structural features of TLR15 which may be relevant to its function, but which requires further experimental validation.


2010 ◽  
Vol 135 (2) ◽  
pp. 115-134 ◽  
Author(s):  
Susan Meier ◽  
Neslihan N. Tavraz ◽  
Katharina L. Dürr ◽  
Thomas Friedrich

The Na+/K+-ATPase mediates electrogenic transport by exporting three Na+ ions in exchange for two K+ ions across the cell membrane per adenosine triphosphate molecule. The location of two Rb+ ions in the crystal structures of the Na+/K+-ATPase has defined two “common” cation binding sites, I and II, which accommodate Na+ or K+ ions during transport. The configuration of site III is still unknown, but the crystal structure has suggested a critical role of the carboxy-terminal KETYY motif for the formation of this “unique” Na+ binding site. Our two-electrode voltage clamp experiments on Xenopus oocytes show that deletion of two tyrosines at the carboxy terminus of the human Na+/K+-ATPase α2 subunit decreases the affinity for extracellular and intracellular Na+, in agreement with previous biochemical studies. Apparently, the ΔYY deletion changes Na+ affinity at site III but leaves the common sites unaffected, whereas the more extensive ΔKETYY deletion affects the unique site and the common sites as well. In the absence of extracellular K+, the ΔYY construct mediated ouabain-sensitive, hyperpolarization-activated inward currents, which were Na+ dependent and increased with acidification. Furthermore, the voltage dependence of rate constants from transient currents under Na+/Na+ exchange conditions was reversed, and the amounts of charge transported upon voltage pulses from a certain holding potential to hyperpolarizing potentials and back were unequal. These findings are incompatible with a reversible and exclusively extracellular Na+ release/binding mechanism. In analogy to the mechanism proposed for the H+ leak currents of the wild-type Na+/K+-ATPase, we suggest that the ΔYY deletion lowers the energy barrier for the intracellular Na+ occlusion reaction, thus destabilizing the Na+-occluded state and enabling inward leak currents. The leakage currents are prevented by aromatic amino acids at the carboxy terminus. Thus, the carboxy terminus of the Na+/K+-ATPase α subunit represents a structural and functional relay between Na+ binding site III and the intracellular cation occlusion gate.


2021 ◽  
Author(s):  
Zhang Tian ◽  
Jingxin Liu ◽  
Jianzhong Zhu ◽  
Rongsong Li ◽  
Ligen Lin

Abstract Background: Non-alcoholic fatty liver disease (NAFLD) is characterized by ectopic accumulation of triglycerides in the liver. Emerging evidence has demonstrated that lipophagy regulates lipid mobilization and energy homeostasis in liver. Sirtuin 3 (SIRT3), a mitochondrial NAD+-dependent deacetylase, modulates the activities of several substrates involving in autophagy and energy metabolism. Honokiol (HK) is a natural lignan from the plants of Magnolia genus that exhibits potent liver protective property. Methods: AML12 was challenged with 500 μM palmitic acid and 250 μM oleic acid mixture solution to induce lipotoxicity. The expression of autophagy-related and AMP-activated protein kinase (AMPK) pathway proteins was evaluated by Western blotting and immunofluorescence staining. Intracellular lipid accumulation was validated by Nile red staining. Molecular docking analysis was performed on AutoDock 4.2.Results: HK (5 and 10 μM) was found to attenuate lipid accumulation through promoting SIRT3-AMPK-mediated autophagy, mainly on lipid droplets. HK had hydrophobic interaction with amino acid residues (PHE294, GLU323 and VAL324) and NAD+. Moreover, HK improved mitochondrial function to enhance lipolysis, through decreasing the acetylated long-chain acyl-CoA dehydrogenase level. Conclusions: These results suggest that HK could ameliorate lipotoxicity in hepatocytes by activating SIRT3-AMPK-lipophagy axis, which might be a potential therapeutic agent against NAFLD.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2712-2712
Author(s):  
Maike Rehage ◽  
Susanne Wingert ◽  
Nadine Haetscher ◽  
Sabrina Bothur ◽  
Hubert Serve ◽  
...  

Abstract Heterotrimeric G-proteins transmit signals of G-protein coupled receptors and regulate many basic cellular functions. However, their role in normal and malignant hematopoietic stem cells remains obscure. Activating mutations in the heterotrimeric G-protein Gaq were found in various cancers and its expression is enhanced in diffuse large B-cell lymphoma and T-ALL. Our previous data suggested the involvement of heterotrimeric G-proteins in Flt3-ITD-mediated leukemic transformation. FMS-like tyrosine kinase 3 with internal tandem duplication (FLT3-ITD) is a frequent oncoprotein in acute myeloid leukemia causing constitutive active STAT5 signaling. Here, we investigated a novel role of Gaq in Flt3-ITD-induced leukemic transformation. We could show that Gaq is indispensable for aberrant FLT3-ITD activation and oncogenic function as Gaq activity is necessary to maintain the autophosphorylation of FLT3-ITD. Gaq abrogation resulted in diminished cell proliferation and colony formation as well as delayed leukemogenesis in vivo of Flt3-ITD leukemic cells. Importantly, the growth inhibition could be rescued by addition of IL3 and did not occur in the presence of FLT3 ligand-activated FLT3 wildtype receptor, demonstrating the specificity of Gaq requirement for FLT3-ITD oncogenic signaling. Interestingly, co-immunoprecipitations revealed a direct physical interaction between FLT3-ITD and Gaq which did not require phosphorylation of the receptor tyrosine kinase. Hence, FLT3-ITD hyperphosphorylation seems to be rather a consequence of the interaction than a prerequisite. Flt3-ITD-induced transformation of murine hematopoietic stem/progenitor cells (HSPCs) strictly depended on the presence of Gaq, and the ablation of Gaq/11 in transplanted Flt3-ITD-transduced HSPCs from conditional Gaq/11 double knock-out mice delayed leukemic burden. These findings of an unexpected, yet critical, role of Gaq place the molecule as an important target for antileukemic strategies. Disclosures No relevant conflicts of interest to declare.


1993 ◽  
Vol 178 (1) ◽  
pp. 367-372 ◽  
Author(s):  
R F Bargatze ◽  
E C Butcher

The homing of blood borne lymphocytes into lymph nodes and Peyer's patches is mediated in part by recognition and binding to specialized high endothelial venules (HEV). Here we demonstrate that a rapid pertussis toxin-sensitive lymphocyte activation event can participate in lymphocyte recognition of HEV. In situ video microscopic analyses of lymphocyte interactions with HEV in exteriorized mouse Peyer's patches reveal that pertussis toxin has no effect on an initial "rolling" displayed by many lymphocytes, but inhibits an activation-dependent "sticking" event required for lymphocyte arrest. This is the first demonstration that physiologic lymphocyte-endothelial interactions can involve sequential rolling, activation, and activation-dependent arrest, previously shown only for neutrophils. The inhibitory effect of the toxin is dependent on its G protein-modifying ADP-ribosyltransferase activity and can be reversed by phorbol myristic acetate, which bypasses cell surface receptors to trigger activation-dependent adhesion. Lymphocyte sticking can occur within 1-3 s after initiation of rolling. We conclude that a rapid receptor-mediated activation event involving G protein signaling can trigger stable lymphocyte attachment to HEV in vivo, and may play a critical role in regulating lymphocyte homing.


Sign in / Sign up

Export Citation Format

Share Document