scholarly journals Zanthoxylum Species: A Review of Traditional Uses, Phytochemistry and Pharmacology in Relation to Cancer, Infectious Diseases and Sickle Cell Anemia

2021 ◽  
Vol 12 ◽  
Author(s):  
Innocent Uzochukwu Okagu ◽  
Joseph Chinedum Ndefo ◽  
Emmanuel Chigozie Aham ◽  
Chibuike. C. Udenigwe

The health benefits and toxicity of plant products are largely dependent on their secondary metabolite contents. These compounds are biosynthesized by plants as protection mechanisms against environmental factors and infectious agents. This review discusses the traditional uses, phytochemical constituents and health benefits of plant species in genus Zanthoxylum with a focus on cancer, microbial and parasitic infections, and sickle cell disease as reported in articles published from 1970 to 2021 in peer-reviewed journals and indexed in major scientific databases. Generally, Z. species are widely distributed in Asia, America and Africa, where they are used as food and for disease treatment. Several compounds belonging to alkaloids, flavonoids, terpenoids, and lignans, among others have been isolated from Z. species. This review discusses the biological activities reported for the plant species and their phytochemicals, including anticancer, antibacterial, antifungal, antiviral, anti-trypanosomal, antimalarial and anti-sickling properties. The safety profiles and suggestions for conservation of the Z. species were also discussed. Taken together, this review demonstrates that Z. species are rich in a wide range of bioactive phytochemicals with multiple health benefits, but more research is needed towards their practical application in the development of functional foods, nutraceuticals and lead compounds for new drugs.

Author(s):  
Neelam Iftikhar ◽  
Shahzad Ali Shahid Chatha ◽  
Tanveer Ahmad ◽  
Qasim Ali ◽  
Abdullah Ijaz Hussain ◽  
...  

Background: Fagonia arabica, belongs to family Zygophyllaceae, is a medicinal plant, widely distributed in the desert areas of the world including Saudi Arabia, Pakistan, India and South Africa. The present review aims to explore the published information on the traditional uses, ethnobotanical knowledge, phytochemistry and various biological activities like antioxidant, antimicrobial, thrombolytic activities and anticoagulant effects of Fagonia arabica with critical analysis on the gaps and future perspectives. Method: A literature survey was performed by searching the digital libraries and the scientific databases including Scopus, Google Scholar, SciFinder, ACS, Web of Science and published books. Results: Fagonia arabica plant has been reported to have a wide range of traditional uses in sore mouth, smallpox, hematological, neurological, endocrinological, inflammatory, cooling agent in stomatitis, vertigo and endothermic reaction in the body. Several bioactive constituents including glycosides, flavonoids, terpenoids, saponins, alkaloids and trace elements were recorded from Fagonia arabica plant. The isolation and identification of two flavonoid glycosides (kaempferol-7-O-rhamnoside and acacetin-7-O-rhamnoside) were also reported. Fagonia arabica has been studied for its wide range of biological activities, which include antioxidant, antimicrobial, cardioprotective and anticoagulant. Conclusion: It is apparent from the literature that Fagonia arabica plant possesses a wide range of medicinal and pharmacological uses and has been studied for its various pharmacological activities and medicinal applications. Critical analysis reveals that the plant has the huge potential for pharmaceutical and pharmacological applications.


2019 ◽  
Vol 16 (2) ◽  
pp. 244-257 ◽  
Author(s):  
Marcus Vinicius Nora de Souza ◽  
Cristiane França da Costa ◽  
Victor Facchinetti ◽  
Claudia Regina Brandão Gomes ◽  
Paula Mázala Pacheco

Background: 1,2,3-triazoles are an important class of organic compounds and because of their aromatic stability, they are not easily reduced, oxidized or hydrolyzed in acidic and basic environments. Moreover, 1,2,3-triazole derivatives are known by their important biological activities and have drawn considerable attention due to their variety of properties. The synthesis of this nucleus, based on the click chemistry concept, through the 1,3-dipolar addition reaction between azides and alkynes is a well-known procedure. This reaction has a wide range of applications, especially on the development of new drugs. Methods: The most prominent eco-friendly methods for the synthesis of triazoles under microwave irradiation published in articles from 2012-2018 were reviewed. Results: In this review, we cover some of the recent eco-friendly CuAAC procedures for the click synthesis of 1,2,3-triazoles with remarks to new and easily recoverable catalysts, such as rhizobial cyclic β-1,2 glucan; WEB (water extract of banana); biosourced cyclosophoraose (CyS); egg shell powder (ESP); cyclodextrin (β- CD); fish bone powder; nanoparticle-based catalyst, among others. Conclusion: These eco-friendly procedures are a useful tool for the synthesis of 1,2,3-triazoles, providing many advantages on the synthesis of this class, such as shorter reaction times, easier work-up and higher yields when compared to classical procedures. Moreover, these methodologies can be applied to the industrial synthesis of drugs and to other areas.


2021 ◽  
Vol 10 (3) ◽  
pp. 2506-2514

Psidium guajava is a tropical evergreen tree. It belongs to the family Myrtaceae that consists of about 133 genera and approximately 3800 species worldwide. This plant is mainly found in South Africa, North Africa, South America, and Southeast Asia. Psidium guajava is mainly a nutritional plant, but it also shows various biological activities. An array of bioactive constituents, viz; glycosides, terpenoids, tannins, alkaloids, steroids, saponins, amino acids, anthraquinones, proteins, flavonoids, and phenols, etc. have been isolated from Psidium guajava. These phytochemicals are well known for their biological activities, including antibacterial, antioxidant, antifungal, etc. The present work has been performed to gather data about the traditional uses, important phytochemicals, and antibacterial efficiency of Psidium guajava. Many pharmacological studies have demonstrated its antibacterial potential against various important drug resistive pathogens. We invite researchers' attention to carry out detailed antibacterial studies on this valuable plant species to provide reliable knowledge to the patients and discover more novel compounds for the development of new drugs with fewer side effects compared to conventional medicines.


2021 ◽  
Vol 4 (2) ◽  
pp. 47-53
Author(s):  
N. Y. Monka ◽  
◽  
N. E. Stadnytska ◽  
I. R. Buchkevych ◽  
K. O. Kaplia ◽  
...  

Benzoquinone and its reduced form hydroquinone belong to phenolic compounds and are found in living organisms in free form or in glycosides. They are active substances of some medicinal plants and have a pharmacological effect on the human body. Accordingly, their derivatives are important objects for chemical synthesis and development of new drugs. This article presents the findings of the structural design of substances with benzoquinone or hydroquinone fragment and sulfur-containing compound. By use of appropriate on-line programs a predictive screening of the biological activity and cytotoxicity of thiosulfonate derivatives of benzoquinone and hydroquinone has been conducted. It has been found that they have immense methodological potential to be synthesized by substances with a wide range of biological activities and a high value of probable activity, which substantiates the feasibility of conducting experimental studies on their biological activity, particularly anticancer.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2891 ◽  
Author(s):  
Josana de Castro Peixoto ◽  
Bruno Junior Neves ◽  
Flávia Gonçalves Vasconcelos ◽  
Hamilton Barbosa Napolitano ◽  
Maria Gonçalves da Silva Barbalho ◽  
...  

Flavonoids are highly bioactive compounds with very low toxicity, which makes them attractive starting points in drug discovery. This study aims to provide information on plant species containing flavonoids, which are found in the Brazilian Cerrado. First, we present the characterization and plant diversity with emphasis on the families of flavonoid-producing plants, and then we describe the phenylpropanoid pathway which represents the flavonoids’ main route biosynthesis—generally conserved in all species. Chemical structures and biological activities of flavonoids isolated from the Cerrado’s plant species are also described based on examples from the relevant literature studies. Finally, research on the biodiversity of the Cerrado biome should be encouraged, due to the discovery of new sources of flavonoids which can provide several benefits to human health and the possibility of developing new drugs by the pharmaceutical industry.


2021 ◽  
Vol 11 (6) ◽  
pp. 13829-13849

Grapes (Vitis vinifera L.) are commonly known grape species that belong to the Vitis genus in the Vitaceae family and come from western Asia and southern Europe. This review consists of traditional uses, phytochemical compounds, nutritional constituents, pharmacological activities, genotoxicological studies, and toxicity studies of V. vinifera. The data were obtained from scientific databases and search engines such as PubMed, Elsevier, Springer, Frontiers, Google Scholar, Scopus, Science Direct, and MDPI. In some countries, grapes used for traditional uses, such as drug therapy for blood-forming, anemia, allergies, wound care, colds and flu, carminative, bronchitis, diarrhea, and anti-phlegm. The main phytochemical compounds in V. vinifera are phenolic compounds, aromatic acids, flavonoids, proanthocyanidins, and stilbenoids. Nutritional constituents can be found in grapevines, i.e., proteins, lipids, carbohydrates, minerals, and vitamins. Parts of the grapevines had a wide variety of biological activities, i.e., antioxidant, antiviral, antiplatelet, antifungal, anticataract, antiobesity, anticholinergic, anti-sunburn, anti-inflammatory, and wound-healing activities. The phytochemical compounds content in each part of the grapevines were different. Each pharmacological activity depends on the grapevine's phytochemical compounds, components used, and extraction type. However, more studies are needed regarding the genotoxicity and toxicity of V. vinifera.


2020 ◽  
Vol 22 (100) ◽  
pp. 60-65
Author(s):  
O. G. Demchuk ◽  
M. R. Hrytsyna ◽  
L. O. Kobryn ◽  
M. B. Kalytovska ◽  
B. V. Gutyj

Searching of new drugs with antimitotic characteristics which can be used for decreasing of cancer cells dividing is the important issue of nowadays. One of such substances there is a hydroxyurea (HU) that is known as mitotical poison, because of characteristic to block a cellular cycle and as the specific inhibitor of DNA synthesis. It blocks the transition of cells from G1 – in S-phase. HU is a cytostatic agent with antineoplastic activity and presents great clinical efficiency in the treatment of sickle cell disease. HU and its derivatives exhibit versatile biological activities. HU is currently used in the treatment of various neoplastic and non-neoplastic diseases such as cancer, sickle cell anemia and HIV.Currently anticancer drugs are available that significantly reduce the mortality rates for some cancers (e.g. leukemia and testicular and ovarian cancer), and give longer overall patient survival times. In order to drug belongs to the pharmacotherapeutic group – antineoplastic agents and widely used for myelogenous leukemia, essential thrombocythemia treatment, our research was concerning the literature review on the ways and mechanisms of action of HU in living organisms. The ways and mechanisms of HU action in living organisms, research of antiviral and antimicrobial action of HU, the mechanism of HU influence at the cellular level and in antitumor and anticancer therapy have been studied. Under studying of radioprotector properties of hydroxyurea was established, that its efficiency is estimated by the values FCD (Factor of change of dose) within the limits of 1.2–1.4 – (to the peas 1.4 and corn – 1.3). A factor of change of dose is a relation of effective dose at the irradiation of organism with a radioprotector to the effective dose that predetermines the same radio-biology effect in control without a radioprotector. It was established that compounds with sulfurhydryl bonding possess the most radioprotective properties. It is considered that they have strong reduction properties and can be used as spin trapping of free radicals, shutting them out before binding with macromoleculas occurs, in particular to DNA. In order to obtain a sufficient amount of the drug hydroxyurea for analytical and pharmacological research, a modified method of it synthesis has been developed and proposed. The optimized synthesis conditions include conducting the experiment at lower temperatures -15 °C (wise -10 °C lit.), neutralization of the reaction mixture with concentrated 50 % sulfuric acid (wise dilute sulfuric acid, lit.); providing concentrated solution by reducing the total amount of water in the reaction 300 ml (wise 500 ml); evaporation and the filtration at room temperature by air flow (wise evaporation in vacuum at 40 °C, lit.); replacement of the solvent for extraction with butanol ( wise alcohol, lit.). Such conditions provided complete dissolution of urethane after 1 h and allow to receive the hydroxyurea pure enough, without further recrystallization. The target product was obtained with a higher yield (up to 91 %) and achieved simplicity and one-step method. The less toxic and cost-effective starting reagents were also used to reduce the cost of the synthesis process.


2020 ◽  
Vol 21 (5) ◽  
pp. 354-363
Author(s):  
Anand Thirupathi ◽  
Chandra M. Shanmugavadivelu ◽  
Sampathkumar Natarajan

Background: Natural products are the rootstock for identifying new drugs since ancient times. In comparison with synthetic drugs, they have abounding beneficial effects in bestowing protection against many diseases, including cancer. Cancer has been observed as a major threat in recent decades, and its prevalence is expected to increase over the next decades. Also, current treatment methods in cancer therapy such as radiation therapy and chemotherapy cause severe adverse side effects among the cancer population. Therefore, it is exigent to find a remedy without any side effects. Methods: In recent years, research has focused on obtaining naturally derived products to encounter this complication. The current pace of investigations, such as gene identification and advancement in combinatorial chemistry, leads to the aberrant access to a wide range of new synthetic drugs. In fact, natural products act as templates in structure predictions and synthesis of new compounds with enhanced biological activities. Results: Recent developments in genomics have established the importance of polymorphism, which implies that patients require different drugs for their treatment. This demands the discovery of a large number of drugs, but limited sources restrict the pharmaceutical industry to overcome these major obstacles. The use of natural products and their semisynthetic and synthetic analogues could alleviate these problems. However, the lack of standardization in terms of developing methods for evaluating the chemical composition, efficacy, isolation and international approval is still a major limitation in this field. In the past few years, several drug-approval authorities, including the FDA and WHO have allowed using these naturally derived compounds in humans. Conclusion: In this review, we described the use of some natural products from plant and marine sources in cancer treatment and shed some light on semi-synthetic and synthetic compounds derived from natural sources used in cancer therapy.


Author(s):  
Rukhsana Tabassum ◽  
Muhammad Ashfaq ◽  
Hiroyuki Oku

Abstract:: Quinoline derivatives are considered as broad spectrum pharmacological compounds that exhibit wide range of biological activities. Integration of quinoline moiety can improve its physical and chemical properties and also pharmacological behavior. Due to its wide range of pharmaceutical applications it is very popular compound to design new drugs for treatment of multiple diseases like cancer, dengue fever, malaria, tuberculosis, fungal infections, AIDS, Alzheimer’s disease and diabetes . In this review our major focus is to pay attention on biological activities of quinoline compounds in treatment of these diseases such as, anti-viral, anti-cancer, anti-malarial, anti-bacterial, anti-fungal, anti-tubercular and anti-diabetic.


2020 ◽  
Vol 16 (1) ◽  
pp. 93-103
Author(s):  
Tiago O. Brito ◽  
Lethícia O. Abreu ◽  
Karen M. Gomes ◽  
Maria C.S. Lourenço ◽  
Patricia M.L. Pereira ◽  
...  

Background: New drugs and strategies to treat tuberculosis (TB) are urgently needed. In this context, thiourea derivatives have a wide range of biological activities, including anti-TB. This fact can be illustrated with the structure of isoxyl, an old anti-TB drug, which has a thiourea as a pharmacophore group. Objective: The aim of this study is to describe the synthesis and the antimycobacterial activity of fifty-nine benzoylthioureas derivatives. Methods: Benzoylthiourea derivatives have been synthesized and evaluated for their activity against Mycobacterium tuberculosis using the MABA assay. After that, a structure-activity relationship study of this series of compounds has been performed. Results and Discussion: Nineteen compounds exhibited antimycobacterial activity between 423.1 and 9.6 μM. In general, we observed that the presence of bromine, chlorine and t-Bu group at the para-position in benzene ring plays an important role in the antitubercular activity of Series A. These substituents were fixed at this position in benzene ring and other groups such as Cl, Br, NO2 and OMe were introduced in the benzoyl ring, leading to the derivatives of Series B. In general, Series B was less cytotoxic than Series A, which indicates that the presence of a substituent at benzoyl ring contributes to an improvement in both antimycobacterial activity and toxicity profiles. Conclusion: Compound 4c could be considered a good prototype to be submitted to further structural modifications in the search for new anti-TB drugs, since it is 1.8 times more active than the first line anti-TB drug ethambutol and 0.65 times less active than isoxyl.


Sign in / Sign up

Export Citation Format

Share Document