scholarly journals Screening of a Small Molecule Compound Library Identifies Toosendanin as an Inhibitor Against Bunyavirus and SARS-CoV-2

2021 ◽  
Vol 12 ◽  
Author(s):  
Shufen Li ◽  
Meidi Ye ◽  
Yuanqiao Chen ◽  
Yulan Zhang ◽  
Jiachen Li ◽  
...  

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus causing serious infectious disease with a high case-fatality of up to 50% in severe cases. Currently, no effective drug has been approved for the treatment of SFTSV infection. Here, we performed a high-throughput screening of a natural extracts library for compounds with activities against SFTSV infection. Three hit compounds, notoginsenoside Ft1, punicalin, and toosendanin were identified for displaying high anti-SFTSV efficacy, in which, toosendanin showed the highest inhibition potency. Mechanistic investigation indicated that toosendanin inhibited SFTSV infection at the step of virus internalization. The anti-viral effect of toosendanin against SFTSV was further verified in mouse infection models, and the treatment with toosendanin significantly reduced viral load and histopathological changes in vivo. The antiviral activity of toosendanin was further expanded to another bunyavirus and the emerging SARS-CoV-2. This study revealed a broad anti-viral effect of toosendanin and indicated its potential to be developed as an anti-viral drug for clinical use.

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1061
Author(s):  
Hiroshi Yamada ◽  
Satoshi Taniguchi ◽  
Masayuki Shimojima ◽  
Long Tan ◽  
Miyuki Kimura ◽  
...  

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe disease in humans with case fatality rates of approximately 30%. There are few treatment options for SFTSV infection. SFTSV RNA synthesis is conducted using a virus-encoded complex with RNA-dependent RNA polymerase activity that is required for viral propagation. This complex and its activities are, therefore, potential antiviral targets. A library of small molecule compounds was processed using a high-throughput screening (HTS) based on an SFTSV minigenome assay (MGA) in a 96-well microplate format to identify potential lead inhibitors of SFTSV RNA synthesis. The assay confirmed inhibitory activities of previously reported SFTSV inhibitors, favipiravir and ribavirin. A small-scale screening using MGA identified four candidate inhibitors that inhibited SFTSV minigenome activity by more than 80% while exhibiting less than 20% cell cytotoxicity with selectivity index (SI) values of more than 100. These included mycophenolate mofetil, methotrexate, clofarabine, and bleomycin. Overall, these data demonstrate that the SFTSV MGA is useful for anti-SFTSV drug development research.


2014 ◽  
Vol 19 (6) ◽  
pp. 878-889 ◽  
Author(s):  
Nenggang Zhang ◽  
Kathleen Scorsone ◽  
Gouqing Ge ◽  
Caterina C. Kaffes ◽  
Lacey E. Dobrolecki ◽  
...  

Separase is an endopeptidase that cleaves cohesin subunit Rad21, facilitating the repair of DNA damage during interphase and the resolution of sister chromatid cohesion at anaphase. Separase activity is negatively regulated by securin and Cdk1–cyclin B in vivo. Separase overexpression is reported in a broad range of human tumors, and its overexpression in mouse models results in tumorigenesis. To elucidate further the mechanism of separase function and to test if inhibition of overexpressed separase can be used as a strategy to inhibit tumor-cell proliferation, small-molecule inhibitors of separase enzyme are essential. Here, we report a high-throughput screening for separase inhibitors (Sepins). We developed a fluorogenic separase assay using rhodamine 110–conjugated Rad21 peptide as substrate and screened a small-molecule compound library. We identified a noncompetitive inhibitor of separase called Sepin-1 that inhibits separase enzymatic activity with a half maximal inhibitory concentration (IC50) of 14.8 µM. Sepin-1 can inhibit the growth of human cancer cell lines and breast cancer xenograft tumors in mice by inhibiting cell proliferation and inducing apoptosis. The sensitivity to Sepin-1 in most cases is positively correlated to the level of separase in both cancer cell lines and tumors.


2021 ◽  
Vol 14 (6) ◽  
pp. 594
Author(s):  
Sari Rasheed ◽  
Franziska Fries ◽  
Rolf Müller ◽  
Jennifer Herrmann

Non-mammalian in vivo disease models are particularly popular in early drug discovery. Zebrafish (Danio rerio) is an attractive vertebrate model, the success of which is driven by several advantages, such as the optical transparency of larvae, the small and completely sequenced genome, the small size of embryos and larvae enabling high-throughput screening, and low costs. In this review, we highlight zebrafish models of Staphyloccoccus aureus infection, which are used in drug discovery and for studying disease pathogenesis and virulence. Further, these infection models are discussed in the context of other relevant zebrafish models for pharmacological and toxicological studies as part of early drug profiling. In addition, we examine key differences to commonly applied models of S. aureus infection based on invertebrate organisms, and we compare their frequency of use in academic research covering the period of January 2011 to January 2021.


Author(s):  
Hiroshi Yamada ◽  
Satoshi Taniguchi ◽  
Masayuki Shimojima ◽  
Long Tan ◽  
Miyuki Kimura ◽  
...  

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe disease in humans with case fatality rates of approximately 30%. There are few treatment options for SFTSV infection. SFTSV RNA synthesis is conducted using a virus-encoded complex with RNA-dependent RNA polymerase activity that is required for viral propagation. This complex and its activities are, therefore, potential antiviral targets. A library of small molecule compounds was screened using a high-throughput screening (HTS) based on an SFTSV minigenome assay (MGA) in a 96-well microplate format to identify potential lead inhibitors of SFTSV RNA synthesis. The assay confirmed inhibitory activities of previously reported SFTSV inhibitors, favipiravir, and ribavirin. A small-scale screening using MGA identified four candidate inhibitors that inhibited SFTSV minigenome activity by more than 80% while exhibiting less than 20% cell cytotoxicity with selectivity index (SI) values of more than 100. These included mycophenolate mofetil, methotrexate, clofarabine, and bleomycin. Overall, these data demonstrate that the SFTSV MGA is useful for anti-SFTSV drug development research.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hu Zhu ◽  
Catherine Z. Chen ◽  
Srilatha Sakamuru ◽  
Jinghua Zhao ◽  
Deborah K. Ngan ◽  
...  

AbstractThe recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved drugs as potential treatments for COVID-19. However, the antiviral mechanisms of action of the drugs found active in these phenotypic screens remain largely unknown. In an effort to deconvolute the viral targets in pursuit of more effective anti-COVID-19 drug development, we mined our in-house database of approved drug screens against 994 assays and compared their activity profiles with the drug activity profile in a cytopathic effect (CPE) assay of SARS-CoV-2. We found that the autophagy and AP-1 signaling pathway activity profiles are significantly correlated with the anti-SARS-CoV-2 activity profile. In addition, a class of neurology/psychiatry drugs was found to be significantly enriched with anti-SARS-CoV-2 activity. Taken together, these results provide new insights into SARS-CoV-2 infection and potential targets for COVID-19 therapeutics, which can be further validated by in vivo animal studies and human clinical trials.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3355 ◽  
Author(s):  
Wanyoung Lim ◽  
Sungsu Park

Three-dimensional (3D) cell culture is considered more clinically relevant in mimicking the structural and physiological conditions of tumors in vivo compared to two-dimensional cell cultures. In recent years, high-throughput screening (HTS) in 3D cell arrays has been extensively used for drug discovery because of its usability and applicability. Herein, we developed a microfluidic spheroid culture device (μFSCD) with a concentration gradient generator (CGG) that enabled cells to form spheroids and grow in the presence of cancer drug gradients. The device is composed of concave microwells with several serpentine micro-channels which generate a concentration gradient. Once the colon cancer cells (HCT116) formed a single spheroid (approximately 120 μm in diameter) in each microwell, spheroids were perfused in the presence of the cancer drug gradient irinotecan for three days. The number of spheroids, roundness, and cell viability, were inversely proportional to the drug concentration. These results suggest that the μFSCD with a CGG has the potential to become an HTS platform for screening the efficacy of cancer drugs.


Sign in / Sign up

Export Citation Format

Share Document