scholarly journals The Current Application and Future Prospects of Astragalus Polysaccharide Combined With Cancer Immunotherapy: A Review

2021 ◽  
Vol 12 ◽  
Author(s):  
Fanming Kong ◽  
Tianqi Chen ◽  
Xiaojiang Li ◽  
Yingjie Jia

So far, immunotherapy has been shown to have impressive effects on different cancers in clinical trials. All those immunotherapies are generally derived from three main therapeutic approaches: immune checkpoint inhibitors, immune cell vaccination, and adoptive cellular immunotherapy. Our research systematically reviewed a wide range of clinical trials and laboratory studies of astragalus polysaccharide (APS) and elucidated the potential feasibility of using APS in activating adoptive immunotherapy. Apart from being effective in adaptive “passive” immunotherapy such as lymphokine-activated killer treatment and dendritic cell (DC)–cytokine–induced killer treatment, APS could also regulate the anti-programmed cell death protein 1 (PD-1)/PD-L1 on the surface of the immune cells, as a part in the immune checkpoint inhibitory signaling pathway by activating the immune-suppressed microenvironment by regulating cytokines, toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways, and immune cells, such as DCs, macrophages, NK cells, and so on. In view of the multiple functions of APS in immunotherapy and tumor microenvironment, a combination of APS and immunotherapy in cancer treatment has a promising prospect.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2660
Author(s):  
Guillaume J. Pegna ◽  
Nitin Roper ◽  
Rosandra N. Kaplan ◽  
Emily Bergsland ◽  
Katja Kiseljak-Vassiliades ◽  
...  

Adrenocortical carcinoma (ACC) is a rare cancer of the adrenal gland that is frequently associated with excess production of adrenal hormones. Although surgical resection may be curative in early-stage disease, few effective therapeutic options exist in the inoperable advanced or metastatic setting. Immunotherapies, inclusive of a broad array of immune-activating and immune-modulating antineoplastic agents, have demonstrated clinical benefit in a wide range of solid and hematologic malignancies. Due to the broad activity across multiple cancer types, there is significant interest in testing these agents in rare tumors, including ACC. Multiple clinical trials evaluating immunotherapies for the treatment of ACC have been conducted, and many more are ongoing or planned. Immunotherapies that have been evaluated in clinical trials for ACC include the immune checkpoint inhibitors pembrolizumab, nivolumab, and avelumab. Other immunotherapies that have been evaluated include the monoclonal antibodies figitumumab and cixutumumab directed against the ACC-expressed insulin-like growth factor 1 (IGF-1) receptor, the recombinant cytotoxin interleukin-13-pseudomonas exotoxin A, and autologous tumor lysate dendritic cell vaccine. These agents have shown modest clinical activity, although nonzero in the case of the immune checkpoint inhibitors. Clinical trials are ongoing to evaluate whether this clinical activity may be augmented through combinations with other immune-acting agents or targeted therapies.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1863
Author(s):  
Nan Chen ◽  
Nicole Higashiyama ◽  
Valentina Hoyos

Immune checkpoint inhibitors utilize the immune system to kill cancer cells and are now widely applied across numerous malignancies. Pembrolizumab has two breast-specific indications in triple-negative disease. Currently, programmed death ligand-1 (PD-L1) expression on tumor and surrounding immune cells is the only validated predictive biomarker for immune checkpoint inhibitors (ICIs) in breast cancer; however, it can be imprecise. Additional biomarkers are needed to identify the patient population who will derive the most benefit from these therapies. The tumor immune microenvironment contains many biomarker candidates. In tumor cells, tumor mutational burden has emerged as a robust biomarker across malignancies in general, with higher burden cancers demonstrating improved response, but will need further refinement for less mutated cancers. Preliminary studies suggest that mutations in breast cancer gene 2 (BRCA-2) are associated with increased immune infiltration and response to ICI therapy. Other genomic alterations are also being investigated as potential predictive biomarkers. In immune cells, increased quantity of tumor-infiltrating lymphocytes and CD8+ cytotoxic T cells have correlated with response to immunotherapy treatment. The role of other immune cell phenotypes is being investigated. Peripherally, many liquid-based biomarker strategies such as PD-L1 expression on circulating tumor cells and peripheral immune cell quantification are being studied; however, these strategies require further standardization and refinement prior to large-scale testing. Ultimately, multiple biomarkers utilized together may be needed to best identify the appropriate patients for these treatments.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2278
Author(s):  
Afshin Derakhshani ◽  
Zeinab Rostami ◽  
Hossein Safarpour ◽  
Mahdi Abdoli Shadbad ◽  
Niloufar Sadat Nourbakhsh ◽  
...  

Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.


2021 ◽  
Vol 148 ◽  
pp. 76-91
Author(s):  
Elisa Agostinetto ◽  
Daniel Eiger ◽  
Matteo Lambertini ◽  
Marcello Ceppi ◽  
Marco Bruzzone ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1020
Author(s):  
Stefan Grote ◽  
Guillermo Ureña-Bailén ◽  
Kenneth Chun-Ho Chan ◽  
Caroline Baden ◽  
Markus Mezger ◽  
...  

Background: Melanoma is the most lethal of all skin-related cancers with incidences continuously rising. Novel therapeutic approaches are urgently needed, especially for the treatment of metastasizing or therapy-resistant melanoma. CAR-modified immune cells have shown excellent results in treating hematological malignancies and might represent a new treatment strategy for refractory melanoma. However, solid tumors pose some obstacles for cellular immunotherapy, including the identification of tumor-specific target antigens, insufficient homing and infiltration of immune cells as well as immune cell dysfunction in the immunosuppressive tumor microenvironment (TME). Methods: In order to investigate whether CAR NK cell-based immunotherapy can overcome the obstacles posed by the TME in melanoma, we generated CAR NK-92 cells targeting CD276 (B7-H3) which is abundantly expressed in solid tumors, including melanoma, and tested their effectivity in vitro in the presence of low pH, hypoxia and other known factors of the TME influencing anti-tumor responses. Moreover, the CRISPR/Cas9-induced disruption of the inhibitory receptor NKG2A was assessed for its potential enhancement of NK-92-mediated anti-tumor activity. Results: CD276-CAR NK-92 cells induced specific cytolysis of melanoma cell lines while being able to overcome a variety of the immunosuppressive effects normally exerted by the TME. NKG2A knock-out did not further improve CAR NK-92 cell-mediated cytotoxicity. Conclusions: The strong cytotoxic effect of a CD276-specific CAR in combination with an “off-the-shelf” NK-92 cell line not being impaired by some of the most prominent negative factors of the TME make CD276-CAR NK-92 cells a promising cellular product for the treatment of melanoma and beyond.


2018 ◽  
Vol 11 ◽  
pp. 175628481880807 ◽  
Author(s):  
Aaron C. Tan ◽  
David L. Chan ◽  
Wasek Faisal ◽  
Nick Pavlakis

Metastatic gastric cancer is associated with a poor prognosis and novel treatment options are desperately needed. The development of targeted therapies heralded a new era for the management of metastatic gastric cancer, however results from clinical trials of numerous targeted agents have been mixed. The advent of immune checkpoint inhibitors has yielded similar promise and results from early trials are encouraging. This review provides an overview of the systemic treatment options evaluated in metastatic gastric cancer, with a focus on recent evidence from clinical trials for targeted therapies and immune checkpoint inhibitors. The failure to identify appropriate predictive biomarkers has hampered the success of many targeted therapies in gastric cancer, and a deeper understanding of specific molecular subtypes and genomic alterations may allow for more precision in the application of novel therapies. Identifying appropriate biomarkers for patient selection is essential for future clinical trials, for the most effective use of novel agents and in combination approaches to account for growing complexity of treatment options.


Cancers ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 155 ◽  
Author(s):  
Martina Gatzka

Over the last decade, the treatment of tumor patients has been revolutionized by the highly successful introduction of novel targeted therapies, in particular small-molecule kinase inhibitors and monoclonal antibodies, as well as by immunotherapies. Depending on the mutational status, BRAF and MEK inhibitor combinations or immune checkpoint inhibitors are current first-line treatments for metastatic melanoma. However, despite great improvements of survival rates limitations due to tumor heterogeneity, primary and acquired therapy resistance, immune evasion, and economical considerations will need to be overcome. Accordingly, ongoing clinical trials explore the individualized use of small-molecule drugs in new targeted therapy combinations based on patient parameters and tumor biopsies. With focus on melanoma therapy this review aims at providing a comprehensive overview of such novel alternative and combinational therapy strategies currently emerging from basic research. The molecular principles and drug classes that may hold promise for improved tumor therapy combination regimens including kinase inhibition, induction of apoptosis, DNA-damage response inhibition, epigenetic reprogramming, telomerase inhibition, redox modulation, metabolic reprogramming, proteasome inhibition, cancer stem cell transdifferentiation, immune cell signaling modulation, and others, are explained in brief. In addition, relevant targeted therapy combinations in current clinical trials and individualized treatment strategies are highlighted.


Author(s):  
Adam C. Palmer ◽  
Benjamin Izar ◽  
Peter K. Sorger

ABSTRACTHundreds of clinical trials are testing whether combination therapies can increase the anti-tumor activity of Immune Checkpoint Inhibitors (ICIs). We find that the benefits of recently reported and approved combinations involving ICIs are fully accounted for by increasing the chance of a single-agent response (drug independence), with no requirement for additive or synergistic efficacy. Thus, the degree of success of combinations involving ICIs with other therapies is largely predictable.


Sign in / Sign up

Export Citation Format

Share Document