scholarly journals Methyl Gallate Improves Hyperuricemia Nephropathy Mice Through Inhibiting NLRP3 Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Liu ◽  
Wen Wang ◽  
Qiang Li ◽  
Xin Hu ◽  
Bingyong Xu ◽  
...  

Hyperuricemia nephropathy (HN) is a form of chronic tubulointerstitial inflammation, caused by the deposition of monosodium urate crystals (MSU) in the distal collecting duct and medullary interstitium, associated with a secondary inflammatory reaction. Numerous published reports indicated that NLRP3 inflammasome pathway play crucial roles in HN symptoms. The present study aims to investigate the protective effects of methyl gallate on HN mice and the underlying mechanisms. An HN model was established by intraperitoneal injection of potassium oxide (PO) to assess the effect of methyl gallate on renal histopathological changes, renal function, cytokine levels and expressions of NLRP3-related protein in HN mice. Moreover, in vitro models of lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs) were established to explore the mechanism of methyl gallate on NLRP3 inflammasome activation. The results showed that methyl gallate significantly ameliorated HN by inhibiting uric acid production and promoting uric acid excretion as well as ameliorating renal injury induced by NLRP3 activation. Mechanistically, methyl gallate is a direct NLRP3 inhibitor that inhibits NLRP3 inflammasome activation but has no effect on the activation of AIM2 or NLRC4 inflammasomes in macrophages. Furthermore, methyl gallate inhibited the assembly of NLRP3 inflammasomes by blocking the ROS over-generation and oligomerization of NLRP3. Methyl gallate was also active ex vivo against ATP-treated PBMCs and synovial fluid mononuclear cells from patients with gout. In conclusion, methyl gallate has a nephroprotective effect against PO-induced HN through blocking the oligomerization of NLRP3 and then exerting anti-inflammatory activity in the NLRP3-driven diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jian-Wei Liu ◽  
Min Chu ◽  
Yong-jun Jiao ◽  
Chuan-Min Zhou ◽  
Rui Qi ◽  
...  

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus that causes hemorrhagic fever. Previous studies showed that SFTSV-infected patients exhibited elevated levels of pro-inflammatory cytokines like interleukin-1β (IL-1β), indicating that SFTSV infection may activate inflammasomes. However, the detailed mechanism remains poorly understood. Herein, we found that SFTSV could stimulate the IL-1β secretion in the infected human peripheral blood mononuclear cells (PBMCs), human macrophages, and C57/BL6 mice. We demonstrate that the maturation and secretion of IL-1β during SFTSV infection is mediated by the nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin-containing domain 3 (NLRP3) inflammasome. This process is dependent on protease caspase-1, a component of the NLRP3 inflammasome complex. For the first time, our study discovered the role of NLRP3 in response to SFTSV infection. This finding may lead to the development of novel drugs to impede the pathogenesis of SFTSV infection.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Simantini Ghosh ◽  
Zaidan Mohammed ◽  
Itender Singh

Abstract Background Current therapies targeting several neurotransmitter systems are only able to partially mitigate the symptoms of stress- and trauma-related disorder. Stress and trauma-related disorders lead to a prominent inflammatory response in humans, and in pre-clinical models. However, mechanisms underlying the induction of neuroinflammatory response in PTSD and anxiety disorders are not clearly understood. The present study investigated the mechanism underlying the activation of proinflammatory NLRP3 inflammasome and IL1β in mouse models of stress. Methods We used two mouse models of stress, i.e., mice subjected to physical restraint stress with brief underwater submersion, and predator odor stress. Mice were injected with MCC950, a small molecule specific inhibitor of NLRP3 activation. To pharmacologically inhibit BTK, a specific inhibitor ibrutinib was used. To validate the observation from ibrutinib studies, a separate group of mice was injected with another BTK-specific inhibitor LFM-A13. Seven days after the induction of stress, mice were examined for anxious behavior using open field test (OFT), light–dark test (LDT), and elevated plus maze test (EPM). Following the behavior tests, hippocampus and amygdale were extracted and analyzed for various components of NLRP3–caspase 1–IL1β pathway. Plasma and peripheral blood mononuclear cells were also used to assess the induction of NLRP3–Caspase 1–IL-1β pathway in stressed mice. Results Using two different pre-clinical models of stress, we demonstrate heightened anxious behavior in female mice as compared to their male counterparts. Stressed animals exhibited upregulation of proinflammatory IL1β, IL-6, Caspase 1 activity and NLRP3 inflammasome activation in brain, which were significantly higher in female mice. Pharmacological inhibition of NLRP3 inflammasome activation led to anxiolysis as well as attenuated neuroinflammatory response. Further, we observed induction of activated Bruton’s tyrosine kinase (BTK), an upstream positive-regulator of NLRP3 inflammasome activation, in hippocampus and amygdala of stressed mice. Next, we conducted proof-of-concept pharmacological BTK inhibitor studies with ibrutinib and LFM-A13. In both sets of experiments, we found BTK inhibition led to anxiolysis and attenuated neuroinflammation, as indicated by significant reduction of NLRP3 inflammasome and proinflammatory IL-1β in hippocampus and amygdala. Analysis of plasma and peripheral blood mononuclear cells indicated peripheral induction of NLRP3–caspase 1–IL1β pathway in stressed mice. Conclusion Our study identified BTK as a key upstream regulator of neuroinflammation, which drives anxiogenic behavior in mouse model of stress. Further, we demonstrated the sexually divergent activation of BTK, providing a clue to heightened neuroinflammation and anxiogenic response to stress in females as compared to their male counterparts. Our data from the pharmacological inhibition studies suggest BTK as a novel target for the development of potential clinical treatment of PTSD and anxiety disorders. Induction of pBTK and NLRP3 in peripheral blood mononuclear cells of stressed mice suggest the potential effect of stress on systemic inflammation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3670-3670
Author(s):  
Laura Hurtado-Navarro ◽  
Ernesto J Cuenca ◽  
Eva Soler ◽  
Andres Jerez ◽  
Helios Martínez-Banaclocha ◽  
...  

Abstract It has been recently shown that RAS mutations, which occur in 11-38% of Chronic Myelomonocytic Leukemia (CMML), do not only act via RAS/MEK/ERK signaling, but contribute to the disease through NLRP3 inflammasome activation (Hamarsheh, Nat Comm 2020). Despite a therapeutic approach based on NLRP3/IL1β axis blockade, as bring to a stem cell transplantation (SCT) has been proposed, data on the efficacy of IL1β inhibitors in hematopoietic neoplasms is limited. A 55 year old man with previous autoinflammatory episodes (constrictive pericarditis) was diagnosed on September 2020 of CMML-1 KRAS G12D (Inter-2). Due to worsening (orchiepidedymitis, pneumonitis, cellulitis), and the impossibility of performing an SCT at that time, on December 02 2020 he started anakinra (a IL1β receptor antagonist) with good response. Due to new episodes of autoinflammation, anakinra was discontinued (12 April 2021) with severe clinical worsening (heart failure) and no response to diuretic/corticosteroid. After anakinra was restarted (04 May 2021), a progressive improvement was seen, allowing a successful pericardiectomy before an SCT. We obtained blood samples from this patient (at different times) and plasma and whole blood samples from 11 and 5 other CMML KRAS mut patients, respectively. We also included CMML patients without KRAS mutations (KRAS wt) (n=8), with sepsis (n=5) and healthy individuals (n=9). Plasma levels of 15 inflammatory cytokines associated with NLRP3 inflammasome and NFkB pathways were measured using a customized MILLIPLEX ® kit. The inflammasome marker activation assays were conducted as previously published (Martínez García JJ, Nature Comm 2019). Compared to healthy controls, KRAS wt CMML patients did not show differences in any cytokine tested, except IL6, while KRAS mut patients showed significantly higher levels of IL1α, IL1ra, IL18, IL12p40 (associated with NLRP3 inflammasome), IL6, IL8 (associated with NFkB pathway) and M-CSF (Fig. 1A B). Compared to KRAS wt CMML patients, those with KRAS mut showed higher levels of cytokines associated with both the NLRP3 and NFkB pathways, reaching statistical significance for those related with NLRP3 inflammasome. We also observed changes in inflammasome related cytokines before and after anakinra (Table 1). This cytokine profile in the plasma made us analyze the oligomerization of ASC as a marker of inflammasome activation in monocytes of KRAS mut CMML. We found that in all cases of KRAS mut CMML patients around 30 to 80% of monocytes presented oligomers of ASC measured by the time of flight assay, while in healthy donors and KRAS wt CMML patients, ASC oligomerization occurred upon NLRP3 inflammasome activation with lipopolysaccharide (LPS) + ATP or Pyrin inflammasome activation with LPS and Clostridium difficile B toxin (TcdB) (Fig. 2A). Ex vivo activation of PBMCs from KRAS mut CMML patients showed that despite the high percentage of cells with ASC oligomers, very low levels of IL1b released from these cells, even when NLRP3 was activated with LPS+ATP (Fig. 2B), suggesting that this inflammasome is activated in vivo and could not be further activated ex vivo. As control, Pyrin inflammasome activation in PBMCs from KRAS mut CMML was able to induce IL1b release similarly to healthy controls (Fig. 2B). We then found that anakinra treatment of the KRAS mut CMML patient followed in this study, resulted in a decrease of the percentage of monocytes with basal active inflammasomes (Fig. 2C). A little ex vivo activation of the NLRP3 inflammasome was obtained when cells were treated with LPS+ATP, while Pyrin inflammasome was activated at normal levels after LPS+TcdB treatment (Fig. 2D). The inflammasome basal activation increased in the monocytes of the KRAS mut CMML patient after anakinra withdraw and during clinical deterioration and restarting anakinra (second arrow) decreased the basal percentage of monocytes with ASC oligomers (Fig. 2C). Since ASC oligomers are associated to pyroptosis via caspase 1 activation and gasdermin D processing, we then analyzed pyroptotic markers in the plasma of the patient during the time. ASC was increased when monocytes presented elevated percentage of ASC oligomers (Fig. 2E), suggesting that ASC detection could be a promising biomarker. Overall, we show that, in vivo, the NLRP3 inflammasome activation of KRAS mut CMML patients may revert with IL1β blockers. ASC could identify those candidates to receive this therapy. PI18/00316 Figure 1 Figure 1. Disclosures Jerez: Novartis: Consultancy; BMS: Consultancy; GILEAD: Research Funding. Bellosillo: Thermofisher Scientific: Consultancy, Speakers Bureau; Roche: Research Funding, Speakers Bureau; Qiagen: Consultancy, Speakers Bureau. Hernández-Rivas: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees. Ferrer Marin: Cty: Research Funding; Incyte: Consultancy, Research Funding; Novartis: Speakers Bureau.


2017 ◽  
Vol 214 (11) ◽  
pp. 3219-3238 ◽  
Author(s):  
Hua Jiang ◽  
Hongbin He ◽  
Yun Chen ◽  
Wei Huang ◽  
Jinbo Cheng ◽  
...  

The NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of human diseases. A few compounds have been developed to inhibit NLRP3 inflammasome activation, but compounds directly and specifically targeting NLRP3 are still not available, so it is unclear whether NLRP3 itself can be targeted to prevent or treat diseases. Here we show that the compound CY-09 specifically blocks NLRP3 inflammasome activation. CY-09 directly binds to the ATP-binding motif of NLRP3 NACHT domain and inhibits NLRP3 ATPase activity, resulting in the suppression of NLRP3 inflammasome assembly and activation. Importantly, treatment with CY-09 shows remarkable therapeutic effects on mouse models of cryopyrin-associated autoinflammatory syndrome (CAPS) and type 2 diabetes. Furthermore, CY-09 is active ex vivo for monocytes from healthy individuals or synovial fluid cells from patients with gout. Thus, our results provide a selective and direct small-molecule inhibitor for NLRP3 and indicate that NLRP3 can be targeted in vivo to combat NLRP3-driven diseases.


2021 ◽  
Vol 35 ◽  
pp. 205873842110383
Author(s):  
Wakako Mori ◽  
Naoe Kaneko ◽  
Ayaka Nakanishi ◽  
Tamotsu Zako ◽  
Junya Masumoto

Introduction Nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3), an intracellular pattern recognition receptor, recognizes various pathogen-associated molecular pattern and/or damage-associated molecular pattern molecules to constitute inflammasome that act as an interleukin (IL)-1β processing platform. Injected insulin is reported to induce focal amyloidosis and the formation of subcutaneous lumps called insulin balls, but the formation of subcutaneous lumps and the underlying cytotoxic mechanism has not been elucidated. Methods Amyloid formation was evaluated by thioflavin T spectroscopic assay and scanning electron microscopy. Binding between insulin amyloid fibrils and NLRP3 was evaluated by immunoprecipitation followed by native polyacrylamide gel electrophoresis. Inflammasome activation was evaluated by immunofluorescence speck formation called “ASC speck” and Western blotting. IL-1β secretion in culture supernatants of peripheral blood mononuclear cells was evaluated by enzyme-linked immunosorbent assay. Cytotoxicity was measured by lactate dehydrogenase release assay. Results Insulin amyloid fibrils interact directly with NLRP3, resulting in NLRP3 inflammasome activation and pyroptotic cell death. Conclusion Insulin ball formation and cytotoxicity may be associated with NLRP3 inflammasome activation followed by pyroptotic cell death.


Sign in / Sign up

Export Citation Format

Share Document