scholarly journals Mini-Review: GSDME-Mediated Pyroptosis in Diabetic Nephropathy

2021 ◽  
Vol 12 ◽  
Author(s):  
Wen Li ◽  
Jing Sun ◽  
Xiaoxi Zhou ◽  
Yue Lu ◽  
Wenpeng Cui ◽  
...  

Pyroptosis is a recently identified type of lytic programmed cell death, in which pores form in the plasma membrane, and cells swell, rupture, and then release their contents, including inflammatory cytokines. Molecular studies indicated that pyroptosis may occur via a gasdermin D (GSDMD) and caspase-1 (Casp1) -dependent classical pathway, a GSDMD and Casp11/4/5-dependent non-classical pathway, or a gasdermin E (GSDME) and Casp3-dependent pathway. Studies of animal models and humans indicated that pyroptosis can exacerbate several complications of diabetes, including diabetic nephropathy (DN), a serious microvascular complication of diabetes. Many studies investigated the mechanism mediating the renoprotective effect of GSDMD regulation in the kidneys of patients and animal models with diabetes. As a newly discovered regulatory mechanism, GSDME and Casp3-dependent pyroptotic pathway in the progression of DN has also attracted people’s attention. Z-DEVD-FMK, an inhibitor of Casp3, ameliorates albuminuria, improves renal function, and reduces tubulointerstitial fibrosis in diabetic mice, and these effects are associated with the inhibition of GSDME. Studies of HK-2 cells indicated that the molecular and histological features of secondary necrosis were present following glucose stimulation due to GSDME cleavage, such as cell swelling, and release of cellular contents. Therefore, therapies targeting Casp3/GSDME-dependent pyroptosis have potential for treatment of DN. A novel nephroprotective strategy that employs GSDME-derived peptides which are directed against Casp3-induced cell death may be a key breakthrough. This mini-review describes the discovery and history of research in this pyroptosis pathway and reviews the function of proteins in the gasdermin family, with a focus on the role of GSDME-mediated pyroptosis in DN. Many studies have investigated the impact of GSDME-mediated pyroptosis in kidney diseases, and these studies used multiple interventions, in vitro models, and in vivo models. We expect that further research on the function of GDSME in DN may provide valuable insights that may help to improve treatments for this disease.

Author(s):  
Mandy Rauschner ◽  
Luisa Lange ◽  
Thea Hüsing ◽  
Sarah Reime ◽  
Alexander Nolze ◽  
...  

Abstract Background The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. Methods Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. Results NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. Conclusions These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Miriam Bittel ◽  
Andreas E. Kremer ◽  
Michael Stürzl ◽  
Stefan Wirtz ◽  
Iris Stolzer ◽  
...  

AbstractDuring viral infections viruses express molecules that interfere with the host-cell death machinery and thus inhibit cell death responses. For example the viral FLIP (vFLIP) encoded by Kaposi’s sarcoma-associated herpesvirus interacts and inhibits the central cell death effector, Caspase-8. In order to analyze the impact of anti-apoptotic viral proteins, like vFlip, on liver physiology in vivo, mice expressing vFlip constitutively in hepatocytes (vFlipAlbCre+) were generated. Transgenic expression of vFlip caused severe liver tissue injury accompanied by massive hepatocellular necrosis and inflammation that finally culminated in early postnatal death of mice. On a molecular level, hepatocellular death was mediated by RIPK1-MLKL necroptosis driven by an autocrine TNF production. The loss of hepatocytes was accompanied by impaired bile acid production and disruption of the bile duct structure with impact on the liver-gut axis. Notably, embryonic development and tissue homeostasis were unaffected by vFlip expression. In summary our data uncovered that transgenic expression of vFlip can cause severe liver injury in mice, culminating in multiple organ insufficiency and death. These results demonstrate that viral cell death regulatory molecules exhibit different facets of activities beyond the inhibition of cell death that may merit more sophisticated in vitro and in vivo analysis.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Zhihui Lu ◽  
Hong Liu ◽  
Nana Song ◽  
Yiran Liang ◽  
Jiaming Zhu ◽  
...  

AbstractPodocytes are known to play a determining role in the progression of proteinuric kidney disease. N6-methyladenosine (m6A), as the most abundant chemical modification in eukaryotic mRNA, has been reported to participate in various pathological processes. However, its role in podocyte injury remains unclear. In this study, we observed the elevated m6A RNA levels and the most upregulated METTL14 expression in kidneys of mice with adriamycin (ADR) and diabetic nephropathy. METTL14 was also evidently increased in renal biopsy samples from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy and in cultured human podocytes with ADR or advanced glycation end product (AGE) treatment in vitro. Functionally, we generated mice with podocyte-specific METTL14 deletion, and identified METTL14 knockout in podocytes improved glomerular function and alleviated podocyte injury, characterized by activation of autophagy and inhibition of apoptosis and inflammation, in mice with ADR nephropathy. Similar to the results in vivo, knockdown of METTL14 facilitated autophagy and alleviated apoptosis and inflammation in podocytes under ADR or AGE condition in vitro. Mechanically, we identified METTL14 knockdown upregulated the level of Sirt1, a well-known protective deacetylase in proteinuric kidney diseases, in podocytes with ADR or AGE treatment. The results of MeRIP-qPCR and dual-luciferase reporter assay indicated METTL14 promoted Sirt1 mRNA m6A modification and degradation in injured podocytes. Our findings suggest METTL14-dependent RNA m6A modification contributes to podocyte injury through posttranscriptional regulation of Sirt1 mRNA, which provide a potential approach for the diagnosis and treatment of podocytopathies.


2008 ◽  
Vol 108 (4) ◽  
pp. 684-692 ◽  
Author(s):  
Laszlo Vutskits ◽  
Adrian Briner ◽  
Paul Klauser ◽  
Eduardo Gascon ◽  
Alexandre G. Dayer ◽  
...  

Background An increasing number of clinical observations suggest adverse neurologic outcome after methylene blue (MB) infusion in the setting of parathyroid surgery. Hence, the aim of the current study was to investigate the potentially neurotoxic effects of MB using a combination of in vivo and in vitro experimental approaches. Methods Isoflurane-anesthetized adult rats were used to evaluate the impact of a single bolus intravascular administration of MB on systemic hemodynamic responses and on the minimum alveolar concentration (MAC) of isoflurane using the tail clamp test. In vivo, MB-induced cell death was evaluated 24 h after MB administration using Fluoro-Jade B staining and activated caspase-3 immunohistochemistry. In vitro, neurotoxic effects of MB were examined in hippocampal slice cultures by measuring excitatory field potentials as well as propidium iodide incorporation after MB exposure. The impact of MB on dendritic arbor was evaluated in differentiated single cell neuronal cultures. Results Bolus injections of MB significantly reduced isoflurane MAC and initiated widespread neuronal apoptosis. Electrophysiologic recordings in hippocampal slices revealed a rapid suppression of evoked excitatory field potentials by MB, and this was associated with a dose-dependent effect of this drug on cell death. Dose-response experiments in single cell neuronal cultures revealed that a 2-h-long exposure to MB at non-cell-death-inducing concentrations could still induce significant retraction of dendritic arbor. Conclusions These results suggest that MB exerts neurotoxic effects on the central nervous system and raise questions regarding the safety of using this drug at high doses during parathyroid gland surgery.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800064 ◽  
Author(s):  
Daiji Kiyozumi ◽  
Yukimasa Taniguchi ◽  
Itsuko Nakano ◽  
Junko Toga ◽  
Emiko Yagi ◽  
...  

Laminin–integrin interactions regulate various adhesion-dependent cellular processes. γ1C-Glu, the Glu residue in the laminin γ1 chain C-terminal tail, is crucial for the binding of γ1-laminins to several integrin isoforms. Here, we investigated the impact of γ1C Glu to Gln mutation on γ1-laminin binding to all possible integrin partners in vitro, and found that the mutation specifically ablated binding to α3, α6, and α7 integrins. To examine the physiological significance of γ1C-Glu, we generated a knock-in allele, Lamc1EQ, in which the γ1C Glu to Gln mutation was introduced. Although Lamc1EQ/EQ homozygotes developed into blastocysts and deposited laminins in their basement membranes, they died just after implantation because of disordered extraembryonic development. Given the impact of the Lamc1EQ allele on embryonic development, we developed a knock-in mouse strain enabling on-demand introduction of the γ1C Glu to Gln mutation by the Cre-loxP system. The present study has revealed a crucial role of γ1C-Glu–mediated integrin binding in postimplantation development and provides useful animal models for investigating the physiological roles of laminin–integrin interactions in vivo.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2001-2001 ◽  
Author(s):  
Thomas Stuebig ◽  
Christine Wolschke ◽  
Haefaa Alchalby ◽  
Francis Ayuk ◽  
Marion Heinzelmann ◽  
...  

Abstract Myelofibrosis (MF) is a clonal myeloproliferative neoplasm, in which the JAK2-V617F mutation is frequently observed. The appearance in up to 50% of the cases makes the JAK2 mutation attractive as therapeutical target. In 2012 Ruxolitinib (Ruxo) a pan-JAK inhibitor was approved for the treatment of MF and showed efficacy in disease treatment, irrespectively of the JAK2V617 mutation status. Currently allogeneic stem cell transplantation (allo SCT) remains the only curative treatment option for MF. To further improve transplant outcome in MF reduction of spleen size and constitutional symptoms prior transplantation is a reasonable target. Harnessing graft versus myelofibrosis post transplantation by immune-modulating drugs may help to reduce the risk of relapse. Ruxolitinib may be used as pre- and post-transplantation drug to improve transplant outcome. However the impact of Ruxolitinib on the immune system, especially on T-cells, is poorly understood. Here we investigated the effects of Ruxolitinib on T-cells in vivo and in vitro. T-cells from healthy donors were isolated by magnetic cell sorting to pan CD3+, CD4+ and CD8+ fraction. All three different cell subsets were cultured with different dosages of Ruxolitinib (100, 250, 500, 750nM and 1µM) for additional 48h. Thereafter cells were analysed for cell growth, cell death, RNA expression, immune phenotype. Additionally, immune profiles of 9 patients were analysed for the changes of the T-cell compartment during the treatment with Ruxolitinib over a period of 3 weeks T –cells from healthy donors showed a dosage dependent impairment in the proliferation capacity compared to non-treated control cells (4.1x106 CD3 cells /ml vs. 1.9x106 CD3 cells /ml, p<0.05), additionally KI67 expression was reduced from 48% in control cells to 12% in 100nM treated CD3 cells and 9% in 500nM treated CD3 cells, p<0.05. Strikingly apoptotic cell death increased from 11% in control cells to 43% and 48% in 100nM and 500nM Ruxo treated cells, p<0.03. Analysing the immune phenotype of Ruxo treated CD3, CD4 and CD8 cells we found a significant reduction in the expression of activation marker like CD25 and HLA-DR (38% vs. 6% and 4.5% respectively, p<0.05 and 63% vs. 47% and 40% respectively, p<0.05). Furthermore, we found that the effector cells, marked by CCR7/CD45RA expression, decreased in the CD8 compartment from 22% to 10.5% and 7.8% respectively, p<0.05. When analysing regulatory T-cells we also observed a decrease in a dose dependent manner (4% vs. 1.2% and 0.8%, p=0.05). While control Treg showed a KI67 expression of >60%, Ruxo (100nM) treated T-reg did not expressed KI67. Likewise to CD8 effector cells and Tregs we found a decrease in pro-inflammatory TH1 and TH17 cells in vitro (27% vs. 14% and 12% for TH1 cells and 6% vs. 4% and 4% for TH17 cells). Next, we analysed mRNA expression and found that pro-inflammatory cytokines like IL23, IL18, IL7 were down regulated after Ruxo treatment. To in contrast to pro- inflammatory cytokines, p53 and cell cycle inhibitor of the cip/waf locus showed to be up regulated in CD3 and CD4 cells suggesting that the observed increase in apoptosis in T-cells is mediated by p53. We next investigated the impact of Ruxolitinib on T-cells in patients. Therefore we analysed the blood of patients treated with Ruxolitinib in weekly intervals. Likewise to in vitro CD3 cells showed a decrease which turned to be significant after two and three weeks of treatment (1560/µl vs. 688/µl and 410/µl, p<0.05), this was mainly through the reduction of CD8+ T-cells (630/µl before treatment vs. 250/µl at week 2 and 200/µl at week 3, p <0.05). We also observed a decrease of CD3+/ HLA-DR+ (as activation marker) from 355/µl before to 130/µl and 70/µl however this did not reached statistical significance. The same was found for Tregs in vivo (5.6% vs. 2.3% and 1.9%, respectively). These data argue that treatment of T-cells by Ruxolitinib impairs their proliferation capacity by inducing apoptosis through an up regulation of p53. This increase of cell death applies all analysed T-cell compartments, and thereby may explains why Ruxo treated T-cells were less able to show a pro-inflammatory as well as regulatory phenotype. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 10 (6) ◽  
pp. 812-822
Author(s):  
Yi-Hua Bai ◽  
Min Yang ◽  
Jia-Ping Wang ◽  
Hong-Ying Jiang ◽  
Luo-Hua Li ◽  
...  

The present study aims to probe the impact of mesenchymal stem cells (MSCs) on the HMGA2 gene and renal tubular epithelial cell EMT in diabetic nephropathy (DN). The advanced glycation end product (AGE) in the later period was used to interfere with the HK-2 cell modeling of humans in vitro, while STZ was used for the modeling of mice DN in vivo. Allogeneic MSCs were used to interfere with the model to detect the concentration of the correlation factor in cells and mice kidney tissues and HMGA2 expression level. The following aspects were prompted after treatment with MSCs in vitro and in vivo: (1) TGF-β1 concentration, Smad2, HMGA2, vimentin and α-SMA expression levels were significantly reduced, when compared to the model group (P <0.05), while Smad7 and E-cadherin expression levels significantly increased, when compared to the model group (P <0.05); (2) The proteinuria and serum creatinine level of mice were alleviated, and the ultrastructure damage condition of kidneys also improved, when compared to the model group. MSCs can restrain the high expression of HMGA2 in DN, EMT and kidney fibrosis, and postpone renal function progression.


Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 4179-4186 ◽  
Author(s):  
Bing Z. Carter ◽  
Steven M. Kornblau ◽  
Twee Tsao ◽  
Rui-Yu Wang ◽  
Wendy D. Schober ◽  
...  

Abstract Survivin and XIAP, members of the protein family known as the inhibitors of apoptosis, interfere with the activation of caspases, called the “cell death executioners.” We examined Survivin (n = 116) and XIAP (n = 172) expression in primary acute myeloid leukemia (AML) blasts and assessed the impact of their expression on prognosis. They were detected in all samples analyzed. However, no correlation was observed with cytogenetics, remission attainment, or overall survival of patients with AML. To investigate the importance of caspases in chemotherapy-induced apoptosis in AML, we treated OCI-AML3 cells with Ara-C, doxorubicin, vincristine, and paclitaxel, which induced caspase cleavage and apoptosis. Blocking of caspase activation by pan-caspase inhibitor abolished poly(adenosine diphosphate [ADP]-ribose) polymerase cleavage and DNA fragmentation but did not prevent chemotherapy-induced cell death and did not inhibit, or only partially inhibited, mitochondrial release of cytochrome c, Smac, apoptosis-inducing factor (AIF), or loss of mitochondrial membrane potential. Caspase inhibition also did not protect AML blasts from chemotherapy-induced cell death in vitro. These results suggest that expression levels of Survivin or XIAP have no prognostic impact in AML patients. Although anticancer drugs induced caspase cleavage and apoptosis, cell killing was caspase independent. This may partially explain the lack of prognostic impact of XIAP and Survivin and may suggest caspase-independent mechanisms of cell death in AML. (Blood. 2003;102:4179-4186)


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

2019 ◽  
Vol 14 (6) ◽  
pp. 504-518 ◽  
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira ◽  
Ana Carolina Irioda ◽  
Katherine Athayde Teixeira de Carvalho

This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords “ADIPOSE”, “CELLS”, and “PERIODONTAL”, with the Boolean operator “AND”. A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.


Sign in / Sign up

Export Citation Format

Share Document