scholarly journals Scorpion Venom Antimicrobial Peptides Induce Caspase-1 Dependant Pyroptotic Cell Death

2022 ◽  
Vol 12 ◽  
Author(s):  
Ranwa A. Elrayess ◽  
Mahmoud E. Mohallal ◽  
Yomn M. Mobarak ◽  
Hala M. Ebaid ◽  
Sarah Haywood-Small ◽  
...  

Within the last decade, several peptides have been identified according to their ability to inhibit the growth of microbial pathogens. These antimicrobial peptides (AMPs) are a part of the innate immune system of all living organisms. Many studies on their effects on prokaryotic microorganisms have been reported; some of these peptides have cytotoxic properties although the molecular mechanisms underlying their activity on eukaryotic cells remain poorly understood. Smp24 and Smp43 are novel cationic AMPs which were identified from the venom of the Egyptian scorpion Scorpio maurus palmatus. Smp24 and Smp43 showed potent activity against both Gram-positive and Gram-negative bacteria as well as fungi. Here we describe cytotoxicity of these peptides towards two acute leukaemia cell lines (myeloid (KG1-a) and lymphoid (CCRF-CEM) leukaemia cell lines) and three non-tumour cell lines CD34+ (hematopoietic stem progenitor from cord blood), HRECs (human renal epithelial cells) and HaCaT (human skin keratinocytes). Smp24 and Smp43 (4–256 µg/ml) decreased the viability of all cell lines, although HaCaT cells were markedly less sensitive. With the exception HaCaT cells, the caspase-1 gene was uniquely up-regulated in all cell lines studied. However, all cell lines showed an increase in downstream interleukin-1β (IL-1β) expression. Transmission electron microscope studies revealed the formation of cell membrane blebs and the appearance of autolysosomes and lipid droplets in all cell lines; KG1-a leukemia cells also showed the unique appearance of glycogen deposits. Our results reveal a novel mechanism of action for scorpion venom AMPs, activating a cascade of events leading to cell death through a programmed pyroptotic mechanism.

2019 ◽  
Vol 26 (3) ◽  
pp. 1409-1415 ◽  
Author(s):  
Ranwa A. Elrayess ◽  
Mahmoud E. Mohallal ◽  
Yomn M. El-Shahat ◽  
Hala M. Ebaid ◽  
Keith Miller ◽  
...  

Abstract Smp24 and Smp43 are novel cationic AMPs identified from the venom of the Egyptian scorpion Scorpio maurus palmatus, having potent activity against both Gram-positive and Gram-negative bacteria as well as fungi. Here we describe cytotoxicity of these peptides towards three non-tumour cell lines (CD34+ (hematopoietic stem progenitor from cord blood), HRECs (human renal epithelial cells) and HACAT (human skin keratinocytes) and two acute leukaemia cell lines (myeloid (KG1a) and lymphoid (CCRF-CEM) leukaemia cell lines) using a combination of biochemical and imaging techniques. Smp24 and Smp43 (4–256 µg/mL) decreased the cell viability (as measured by intracellular ATP) of all cells tested, although keratinocytes were markedly less sensitive. Cell membrane leakage as evidenced by the release of lactate dehydrogenase was evident throughout and was confirmed by scanning electron microscope studies.


Cartilage ◽  
2020 ◽  
pp. 194760352097676
Author(s):  
Ekkapol Akaraphutiporn ◽  
Takafumi Sunaga ◽  
Eugene C. Bwalya ◽  
Wang Yanlin ◽  
Mwale Carol ◽  
...  

Objective To investigate the role and characterize the molecular mechanisms regulating apoptosis and autophagy in nitric oxide (NO)–induced chondrocyte cell death. Design Cell apoptosis and autophagy were evaluated in chondrocytes treated with sodium nitroprusside (SNP) combined with the presence or absence of interleukin-1 beta (IL-1β) and nutrient-deprived conditions. The concentration of nitrite was determined by Griess reaction. Activation of apoptosis and autophagy were determined by immunocytochemistry, Western blot, and quantitative real-time polymerase chain reaction (qPCR) analysis. Flow cytometry and MTT assay were used to assess cell viability. Results Cotreatment of chondrocytes with SNP and IL-1β under nutrient-deprived condition potentially enhanced the effect of NO-induced cell death. Immunocytochemistry, Western blot, and qPCR analysis indicated that treatment of chondrocytes with SNP significantly reduced autophagic activity, autophagic flux, and multiple autophagy-related (Atg) genes expression. These findings were associated with an increase in ERK, Akt, and mTOR phosphorylation, whereas autophagy induction through mTOR/p70S6K inhibition by rapamycin significantly suppressed NO-induced cell apoptosis. Furthermore, the cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-3 activation in response to apoptosis was weakly detected. These results corresponded with a significant increase in apoptosis-inducing factor (AIF) expression, suggesting the involvement of the caspase-independent pathway. Conclusions These results demonstrate that in chondrocyte cultures with cells induced into an osteoarthritis state, NO inhibits autophagy and induces chondrocyte apoptosis mainly, but not completely through the caspase-independent pathway. Our data suggest that autophagy is a protective mechanism in the pathogenesis of osteoarthritis and could be proposed as a therapeutic target for degenerative joint diseases.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2335-2335
Author(s):  
Iekuni Oh ◽  
Akira Miyazato ◽  
Hiroyuki Mano ◽  
Tadashi Nagai ◽  
Kazuo Muroi ◽  
...  

Abstract Mesenchymal stem cells (MSCs) account for a very small population in bone marrow stroma as a non-hematopoietic component with multipotency of differentiation into adipocytes, osteocytes and chondrocytes. MSC-derived cells are known to have hematopoiesis-supporting and immunomodulatory abilities. Although clinical applications of MSCs have already been conducted for the suppression of graft versus host disease in allogeneic stem cell transplantation and for tissue regeneration, underlying mechanisms of the biological events are still obscure. Previously, we established a differentiation model of MSCs using a mouse embryo fibroblast cell line, C3H10T1/2 (10T1/2) (Nishikawa M et al: Blood81:1184–1192, 1993). Preadipocyte (A54) and myoblast (M1601) cell lines were cloned by treatment with 5-azacytidine. A54 cells and M1601 cells can terminally differentiate into adipocytes and myotubes, respectively, under appropriate conditions, while parent 10T1/2 cells remain undifferentiated. Moreover, A54 cells show a higher ability to support hematopoiesis compared with the other cell lines. In this study, we analyzed gene expression profiles of the three cell lines by using DNA microarray and real-time PCR to investigate molecular mechanisms for maintaining immaturity of parent 10T1/2 cells. In A54 cells, 202 genes were up-regulated, including those encoding critical factors for hematopoiesis such as SCF, Angiopoietin-1, and SDF-1 as well as genes known to be involved in adipocyte differentiation such as C/EBPα, C/EBPδ and PPAR-γ genes. These data are consistent with the hematopoiesis-supporting ability of A54 cells. During adipocyte differentiation, SCF and SDF-1 expression levels decreased in A54 cells while C/EBPα expression showed a steady level. Recently, osteoblasts have been reported to play crucial roles in “niche” for self-renewal of hematopoietic stem cells. Our results also implicate that precursor cells of non-hematopoietic components may have important roles for hematopoiesis in bone marrow. Meanwhile, in parent 10T1/2 cells, 105 genes were up-regulated, including CD90, Dlk, Wnt5α and many functionally unknown genes. Although C/EBPα expression was induced in 10T1/2 cells without differentiation under the adipocyte differentiation conditions, CD90 expression decreased, Dlk showed a steady level and Wnt5α was up-regulated. Assuming that some regulatory mechanisms are needed to keep an immature state of parent 10T1/2 cells even under the differentiation-inducible conditions, we performed following experiments. First, enforced Dlk expression in A54 cells did not inhibit terminal differentiation to adipocytes under the differentiation conditions. Second, when we cultured A54 cells in the conditioned media of parent 10T1/2 cells under the differentiation-inducible conditions, adipocyte differentiation was inhibited, suggesting that 10T1/2 cells produce some soluble molecules that can inhibit adipocyte differentiation. Since Wnt family is known to be involved in the regulation of self-renewal of several stem cells, Wnt5α may be one candidate for maintenance of “stemness” of MSCs. Taken together, the data of 10T1/2 cells suggest that MSCs can self-regulate their differentiation in the bone marrow stromal system. This concept may be important to investigate the fatty change of bone marrow in aging and in aplastic anemia.


Blood ◽  
2009 ◽  
Vol 114 (5) ◽  
pp. 1026-1028 ◽  
Author(s):  
Yu Yu ◽  
Cristina Iclozan ◽  
Tomohide Yamazaki ◽  
Xuexian Yang ◽  
Claudio Anasetti ◽  
...  

Activation-induced cell death (AICD) plays an important role in peripheral T-cell tolerance. AICD in CD4 T helper (Th) cells, including Th1 and Th2 effectors, has been extensively studied. Recently, interleukin-17–producing CD4+ T cells (Th17 cells) have been identified as a unique Th subset, but their susceptibility to AICD and the underlying molecular mechanisms have not been defined. In this study, we found that Th17 cells were significantly less susceptible to AICD than Th1 cells, and Th17 cell resistance to AICD is due to the high levels of c-Fas–associated death domain–like interleukin-1–converting enzyme inhibitory protein preventing Fas-mediated apoptosis. The resistance of Th17 cells to AICD reveals a novel mechanism to explain the high pathogenicity of Th17 cells in autoimmune diseases, and may also provide a rationale to generate tumor-specific Th17 cells for adoptive immunotherapy.


2015 ◽  
Vol 43 (03) ◽  
pp. 559-579 ◽  
Author(s):  
Cheng-Wei Tzeng ◽  
Wen-Sheng Tzeng ◽  
Liang-Tzung Lin ◽  
Chiang-Wen Lee ◽  
Ming-Hong Yen ◽  
...  

For centuries, natural plant extracts have played an important role in traditional medicine for curing and preventing diseases. Studies have revealed that Artocarpus communis possess various bioactivities, such as anti-inflammation, anti-oxidant, and anticancer activities. A. communis offers economic value as a source of edible fruit, yields timber, and is widely used in folk medicines. However, little is known about its molecular mechanisms of anticancer activity. Here, we demonstrate the antiproliferative activity of A. communis methanol extract (AM) and its dichloromethane fraction (AD) in two human hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. Colony assay showed the long-term inhibitory effect of both extracts on cell growth. DNA laddering and immunoblotting analyses revealed that both extracts did not induce apoptosis in the hepatoma cell lines. AM and AD-treated cells demonstrated different cell cycle distribution compared to UV-treated cells, which presented apoptotic cell death with high sub-G1 ratio. Instead, acridine orange staining revealed that AM and AD triggered autophagosome accumulation. Immunoblotting showed a significant expression of autophagy-related proteins, which indicated the autophagic cell death (ACD) of hepatoma cell lines. This study therefore demonstrates that A. communis AM and its dichloromethane fraction can induce ACD in HCC cells and elucidates the potential of A. communis extracts for development as anti tumor therapeutic agents that utilize autophagy as mechanism in mediating cancer cell death.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4364-4364
Author(s):  
Zhen Cai ◽  
Hanying Bao

Abstract The inhibitor of apoptosis (IAP) gene family, which was discovered less than a decade ago, encodes a group of structurally related proteins that, in addition to their ability to suppress apoptotic cell death, are involved in an increasing number of seemingly unrelated cellular functions. The IAP families have evolved as highly conserved regulators of cell death. Homoharringtonine(HHT) is a plant alkaloid with antileukemia activity which is currently tested for treatment of acute and chronic leukemia. Our previous study suggested that HHT could induced apoptosis of MUTZ-1 in vitro, but little is know about the possible molecular mechanisms of HHT induced cell apoptosis. The study on the mechanisms of HHT in regulation of apoptosis will give us insight into further understanding of the role HHT. The data generated from this study will also provide theoretical ground for making use of HHT in clinical treatment. In this study, five cell lines including MUTZ-1, K562, Jurkat, RMPI and HL60 were used in the experiments to detect the effects of HHT on the induction of apoptosis and to study the possible mechanisms of HHT in regulation of apoptosis of the cells. Cell apoptosis were observed by flow cytometry (FCM). Cell apoptotic morphology was observed by transmission electron microscope. Semi-quantitative RT-PCR was used to evaluate the mRNA expression of survivin, XIAP, Bcl-2 and Bax in these cells. Our results demonstrated that HHT was capable of inducing apoptosis in all the five cell lines, with an increasing apoptotic rate in the order of K562, MUTZ-1/RMPI, and Jurkat/HL60, at a HHT concentration of 0.1 μg/ml for 12 hours (p<0.05). Survivin mRNA was not detected without HHT treatment but was detected in all the five cell lines after induction with HHT. Interestingly, the level of survivin mRNA expression was detected in the same but reversed order as with apoptotic rate: cell lines showed lowest apoptotic rate had highest survivin mRNA level, indicating a negative correlation between the two (p=0.003). The expression of Bcl-2 and Bax mRNA showed no significant correlation to HHT-induced apoptotic rate. There was no significant difference in XIAP expression in the 5 cell lines. We conclude that HHT might act via reduction of survivin expression and the level of survivin mRNA may serve as a predictor for chemotherapy sensitivity to HHT.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2177-2177
Author(s):  
Yuri Kamitsuji ◽  
Souichi Adachi ◽  
Motonobu Watanabe ◽  
Hiroshi Matsubara ◽  
Yasuhiro Mizushima ◽  
...  

Abstract The blockade of Bcr-Abl signaling suppresses cellular growth and induces cell death in Bcr-Abl-positive (Bcr-Abl+) cells. We herein assessed the cell death mechanisms induced by INNO-406 (formerly NS-187; Kimura et al, Blood 2005), in four CML-derived Bcr-Abl+ cell lines (K562, KT-1, BV173 and MYL), and Ba/F3 harboring wild type bcr-abl (Ba/F3/wt bcr-abl). When cells are treated by INNO-406, the accumulation of subG1 fraction was seen in all five cell lines. This cell death was accompanied by loss of mitochondrial membrane potential and was inhibited by over-expression of Bcl-2, indicating that INNO-406-induced cell death is mainly mediated by mitochondria-dependent apoptosis. Caspase-3 activation in INNO-406-treated cell was also common among all cell lines. However, the inhibition of caspase activity by ZVAD-fmk (ZVAD), a pan-caspase inhibitor, was variable in the cell lines tested. In K562, KT-1 and BV173 cells treated with INNO-406, ZVAD almost completely prevented apoptosis (i.e. showing atypical feature for apoptosis, no DNA fragmentation and no accumulation of subG1 fraction), with cell death resulting from morphologically non-apoptotic cell death. The percentages of non-apoptotic cells under ZVAD co-treated with INNO-406 varied among the three cell lines, suggesting that the dependence on non-apoptotic cell death is variable. While, in MYL and Ba/F3/wt bcr-abl cells, despite the sufficient inhibition of caspases’ activity, the inhibition of the cell death by ZVAD was only partial and these cell lines still underwent apoptosis (i.e. showing DNA fragmentation and the accumulation of subG1 population), suggesting the presence of caspase-independent apoptotic machineries. In addition, assay data for apoptosome activities (complex of Apaf-1, cytochrome c and caspase-9 that initiates and drives cysteine protease activities of caspase in mitochondrial-mediated pathway) suggested that cell types could be largely subdivided into two groups, namely those cells with high apoptosome activity (K562, KT-1 and BV173) that undergo non-apoptotic, and, those cells with low apoptosome activity (MYL and Ba/F3/wt bcr-abl.) that undergo caspase-independent apoptosis when caspase activity was blocked by ZVAD. These data indicate that there is a common initial pathway for cell death due to INNO-406, while the pathway for cell death commitment (i.e. dependence on apoptosome/caspases-mediated apoptosis pathway that has been commonly believed to be central for apoptosis execution) vary among cellular context in Bcr-Abl+ leukemic cells. Moreover, in a mouse model of primary human CML in blast crisis, INNO-406 caused cell death with fragmented nuclei typical to apoptosis and “necklace-like” nuclei not typical of apoptosis, further implicating the significance of involvement of caspase-independent, non-apoptotic cell death in vivo. Further studies of the role of caspase-independent cell death in patient-derived Bcr-Abl+ cells and the molecular mechanisms that lead to mitochondrial-depolarization and caspase-independent apoptotic and/or non-apoptotic cell death may help the development of novel therapeutic strategies against Bcr-Abl+ leukemias.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2767-2767
Author(s):  
Ravi Dashnamoorthy ◽  
Irawati Kandela ◽  
Savita Bhalla ◽  
Jasmine Galloway ◽  
Irina Zaretsky ◽  
...  

Abstract Abstract 2767 Background: MLN2238 is a novel 2nd generation proteasome inhibitor with significant anti-neoplastic activity. We investigated the preclinical therapeutic efficacy of MLN2238 in TCL and HL cells through in vitro and in vivo tumor models and examined the related molecular mechanisms of action. Methods: TCL cell lines (Jurkat, Hut78 and HH) and HL cell lines (L428, L540, L1236) were treated with increasing concentrations of MLN2238 from 24 to 48 hours. Inhibitor concentrations at 50% cell viability (IC50) values were determined using Calcusyn software. Biological function of MAPK, AKT/PI3K, NFκB, and proteasome activity were analyzed using Western blot. We also interrogated pertinent signaling pathways with shRNA stable knock outs (KO) in the presence and absence of MLN2238. Cell viability was assessed by MTT and apoptosis in was measured with Annexin-V/propidium iodide (PI) flow cytometric analysis; this was confirmed by Western blot analysis for caspase activation and PARP cleavage. In vivo tumor growth inhibition and survival of tumor bearing SCID mice was determined using xenografts derived from Jurkat (TCL) or L540 (HL) cell lines. Cells were inoculated at density of 5×106 subcutaneously (SQ). The in vivo study started with 7–8 mice for each control group and 7–8 mice for each treatment group. Once the tumor volume average reaches 100–250 mm3, the treatment and control groups were injected (5 days per week) with similar volumes of MLN2238 SQ daily or 5% cyclodextrin, respectively, for a total of 3 weeks. Results: Treatment with 50–100 nanomolar (nM) of MLN2238 resulted in time- and dose-dependent increase in cytotoxicity in all TCL and HL cell lines. The IC50 values for 72-hour treatment with MLN2238 were 38nM, 52nM, and 41nM for Jurkat, Hut78, and HH respectively, and 117nM and 39nM for L428 and L540, respectively. Further, MLN2238 resulted in dose-dependent increase in apoptosis as detected by Annexin-V/PI (p<0.001) and cleavage of PARP and caspases 3, 8, and 9 in all TCL and HL cell lines. In vivo experiments with tumor xenografts derived from Jurkat (TCL) and L540 (HL) showed significant inhibition of tumor growth (P<0.001) (see Figure) as well as improved survival (P<0.001) in MLN2238-treated mice with low concentrations of MLN2238 compared with untreated control. We next examined proteasome activity; we detected significant intracellular accumulation of ubiquitnylated proteins in all TCL and HL cell lines following 25–50nM of MLN2238. We also observed decreased levels of total NFkB-p65 (anti-apoptotic) in all TCL and HL cell lines, except L540. In addition, examination of relevant signaling pathways after MLN2238 treatment (25–50nM) showed activation of the MAPK pathway as detected by increased phosphorylation of pERK in TCL (Jurkat, HH, and Hut78) and in HL (L428 and L1236); pERK was undetectable in L540. Next, we tested cytotoxicity of MLN2238 in MEK and ERK KO cell lines using stably transfected shRNA in L540, Hut78, and Jurkat lines. There was minimal effect of these KOs in the TCL lines, while there was increased cytotoxic effect in L540 with ERK shRNA. Treatment with MLN2238 also resulted in decreased levels of total AKT in all TCL and HL cell lines. The role of the JNK signaling pathway in apoptosis is complex where its activation could either lead to induction or suppression of apoptosis. MLN2238 treatment in TCL resulted in decreased levels of pJNK in Jurkat, HH, and Hut78. In contrast, treatment of HL cell lines with MLN2238 resulted in increased levels of pJNK in L428, L540, and L1236. Conclusions: Altogether, we found that the novel 2nd generation proteasome inhibitor, MLN2238, induced potent cell death at nanomolar and clinically achievable concentrations in multiple TCL and HL cells lines and in associated TCL and HL in vivo xenograft models. In HL cells, the cytotoxic effect of MLN2238 appeared to be mediated in part through ERK. Further investigation is required to continue to elucidate the molecular mechanisms of cell death induced by MLN2238 and to identify potential rational novel therapeutic combinations. Clinical investigation of this novel agent in TCL and HL is warranted. Disclosures: Off Label Use: MLN2238 for treatment of T cell lymphoma and Hodgkin's lymphoma.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3826-3826
Author(s):  
Marijn A. Gillissen ◽  
Etsuko Yasuda ◽  
Sophie Levie ◽  
Arjen Q Bakker ◽  
Martijn Kedde ◽  
...  

Abstract Introduction Acute myeloid leukemia (AML) is a high-risk malignancy with a poor prognosis. Allogeneic hematopoietic stem cell transplantation (HSCT) can be curative if it induces a potent graft versus leukemia (GvL) response. GvL responses and graft versus host disease (GvHD) are typically considered T cell mediated, because T cell depletion from hematopoietic stem cell grafts reduces the risk of GvHD at the cost of leukemia relapse. In addition, depletion of B-lymphocytes with rituximab has led to amelioration of GvHD in a number of studies suggesting that B cells are also important in the pathophysiology of GvHD and, in analogy, in GvL responses. However, the characteristics of the antibodies produced by these leukemic specific B cells have not yet been studied. Methods We selected three patients with high-risk myelomonocytic leukemia who remained disease free years after allogeneic HSCT, from whom we established clonal human B cell lines, using a unique and innovative technology that was developed in our laboratory (Kwakkenbos ea, Nat Med 2010). These B cell lines, that concomitantly express immunoglobulin on their membranes and secrete antibodies, were used to select antibodies specific for cell surface antigens on AML cell lines with similar morphologic and immunophenotypic characteristics as the patients’ leukemic blasts, using a FACS based assay. Results From each patient, several AML specific B cell clones were retrieved. Their antibodies recognized surface antigens on primary AML blasts derived from multiple patients and on AML cell lines, but not on healthy bone marrow, peripheral blood mononuclear cells or tissues such as liver, skin and colon. The majority of the antibodies were of the IgG3 isotype. Approximately 40% of the AML-specific antibodies induced direct death of cultured AML cell lines and of primary AML blasts. The cell death pathway induced by these cytotoxic antibodies was oncotic rather than apoptotic. Conclusion Our data demonstrate that high-risk AML patients with a potent GvL response mount robust antibody responses against surface antigens that are specifically expressed on tumor cells and binding of these antibodies induces direct cell death. The targets recognized by the recovered antibodies are also expressed on leukemic blast from other patients suggesting evidence for a common immune mechanism responsible for AML clearance. Our findings suggest that antibody responses are important in GvL and open up new ventures for specific antibody treatment of AML patients. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 33 (03) ◽  
pp. 405-414 ◽  
Author(s):  
Eun-Cheol Kim ◽  
Young-Soo Hwang ◽  
Hwa-Jeong Lee ◽  
Sun-Kyung Lee ◽  
Myung-Hee Park ◽  
...  

Caesalpinia sappan L. (C. sappan) has been used in Oriental medicine as an antitumor agent. The present study shows the effects of the chloroform extract of C. sappan on cell death in head and neck cancer cell lines. The viability of HNSCC4 and HNSCC31 cells (head and neck cancer cell lines) was noticeably decreased compared to that of HaCaT cells (control group) in the presence of chloroform extract. No significant difference was observed in the viability of HNSCC4 and HNSCC31 cells when compared with HaCaT cells in the presence of n-butanol, methanol, and water extracts. Exposure to the chloroform extract of C. sappan resulted in an increase in the Sub-G1 phase of the cell cycle and condensation and shrinkage of nuclei in the HNSCC4 and HNSCC31 cells. The levels of p53 and p21WAF1/CIP1 were also increased in the HNSCC4 and HNSCC31 cells. The results suggest that the chloroform extract of C. sappan may increase cell death in the HNSCC4 and HNSCC31 cells, which is linked to increased cellular levels of p53 and p21WAF1/CIP1 .


Sign in / Sign up

Export Citation Format

Share Document