scholarly journals Isolation and Contact Tracing Can Tip the Scale to Containment of COVID-19 in Populations With Social Distancing

2021 ◽  
Vol 8 ◽  
Author(s):  
Mirjam E. Kretzschmar ◽  
Ganna Rozhnova ◽  
Michiel van Boven

SARS-CoV-2 has established itself in all parts of the world, and many countries have implemented social distancing as a measure to prevent overburdening of health care systems. Here we evaluate whether and under which conditions containment of SARS-CoV-2 is possible by isolation and contact tracing in settings with various levels of social distancing. To this end we use a branching process model in which every person generates novel infections according to a probability distribution that is affected by the incubation period distribution, distribution of the latent period, and infectivity. The model distinguishes between household and non-household contacts. Social distancing may affect the numbers of the two types of contacts differently, for example while work and school contacts are reduced, household contacts may remain unchanged. The model allows for an explicit calculation of the basic and effective reproduction numbers, and of exponential growth rates and doubling times. Our findings indicate that if the proportion of asymptomatic infections in the model is larger than 30%, contact tracing and isolation cannot achieve containment for a basic reproduction number (ℛ0) of 2.5. Achieving containment by social distancing requires a reduction of numbers of non-household contacts by around 90%. If containment is not possible, at least a reduction of epidemic growth rate and an increase in doubling time may be possible. We show for various parameter combinations how growth rates can be reduced and doubling times increased by contact tracing. Depending on the realized level of contact reduction, tracing and isolation of only household contacts, or of household and non-household contacts are necessary to reduce the effective reproduction number to below 1. In a situation with social distancing, contact tracing can act synergistically to tip the scale toward containment. These measures can therefore be a tool for controlling COVID-19 epidemics as part of an exit strategy from lock-down measures or for preventing secondary waves of COVID-19.

Author(s):  
Mirjam E. Kretzschmar ◽  
Ganna Rozhnova ◽  
Michiel van Boven

AbstractBackgroundNovel coronavirus (SARS-CoV-2) has extended its range of transmission in all parts of the world, with substantial variation in rates of transmission and severity of associated disease. Many countries have implemented social distancing as a measure to control further spread.MethodsWe evaluate whether and under which conditions containment or slowing down COVID-19 epidemics are possible by isolation and contact tracing in settings with various levels of social distancing. We use a stochastic transmission model in which every person generates novel infections according to a probability distribution that is affected by the incubation period distribution (time from infection to symptoms), distribution of the latent period (time from infection to onset of infectiousness), and overall transmissibility. The model distinguishes between close contacts (e.g., within a household) and other contacts in the population. Social distancing affects the number of contacts outside but not within the household.FindingsThe proportion of asymptomatic or unascertained cases has a strong impact on the controllability of the disease. If the proportion of asymptomatic infections is larger than 30%, contact tracing and isolation cannot achieve containment for an R0 of 2.5. Achieving containment by social distancing requires a reduction of numbers of non-household contacts by around 90%. Depending on the realized level of contact reduction, tracing and isolation of only household contacts, or of household and non-household contacts are necessary to reduce the effective reproduction number to below 1. A combination of social distancing with isolation and contact tracing leads to synergistic effects that increase the prospect of containment.InterpretationIsolation and contact tracing can be an effective means to slow down epidemics, but only if the majority of cases are ascertained. In a situation with social distancing, contact tracing can act synergistically and tip the scale towards containment, and can therefore be a tool for controlling COVID-19 epidemics as part of an exit strategy from current lockdown measures.FundingThis research was partly funded by ZonMw project number 91216062.Research in contextEvidence before this studyAs of 8 April 2020, the novel coronavirus (SARS-CoV-2) has spread to more than 170 countries and has caused near 90,000 deaths of COVID-19 worldwide. In the absence of effective medicines and vaccines, the preventive measures are limited to social distancing, isolation of confirmed and suspected cases, and identification and quarantining of their contacts. Evidence suggests that a substantial portion of transmission may occur before the onset of symptoms and before cases can be isolated, and that many cases remain unascertained. This has potentially important implications for the prospect of containment by combinations of these measures.Added value of this studyUsing a stochastic transmission model armed with current best estimates of epidemiological parameters, we evaluated under which conditions containment could be achieved with combinations of social distancing, isolation and contact tracing. We investigated the level of social distancing needed for containment, and how an additional implementation of isolation and contact tracing may likely help to in reducing the effective reproduction number to below 1, the critical threshold. We analyzed what proportion of household and non-household contacts need to be isolated effectively to achieve containment depending on the level of social distancing in the population. We estimated the impact of combinations of these measures on epidemic growth rate and doubling time for the number of infections. We find that under realistic assumptions on the level of social distancing, additional isolation and contact tracing are needed for stopping the epidemic. Whether quarantining only household contacts is sufficient, depends on levels of social distancing and timeliness of tracing and isolation.Implications of all the available evidenceOur analyses based on best understanding of the epidemiology of COVID-19, highlight that if social distancing is not complete, isolation and contact tracing at least of household contacts can help to delay and lower the epidemic peak. High levels of timely contact tracing of household and non-household contacts may be sufficient to control the epidemic.


2015 ◽  
Vol 37 (1) ◽  
pp. 73-88
Author(s):  
Petra Baji ◽  
Márta Péntek ◽  
Imre Boncz ◽  
Valentin Brodszky ◽  
Olga Loblova ◽  
...  

In the past few years, several papers have been published in the international literature on the impact of the economic crisis on health and health care. However, there is limited knowledge on this topic regarding the Central and Eastern European (CEE) countries. The main aims of this study are to examine the effect of the financial crisis on health care spending in four CEE countries (the Czech Republic, Hungary, Poland and Slovakia) in comparison with the OECD countries. In this paper we also revised the literature for economic crisis related impact on health and health care system in these countries. OECD data released in 2012 were used to examine the differences in growth rates before and after the financial crisis. We examined the ratio of the average yearly growth rates of health expenditure expressed in USD (PPP) between 2008–2010 and 2000–2008. The classification of the OECD countries regarding “development” and “relative growth” resulted in four clusters. A large diversity of “relative growth” was observed across the countries in austerity conditions, however the changes significantly correlate with the average drop of GDP from 2008 to 2010. To conclude, it is difficult to capture visible evidence regarding the impact of the recession on the health and health care systems in the CEE countries due to the absence of the necessary data. For the same reason, governments in this region might have a limited capability to minimize the possible negative effects of the recession on health and health care systems.


Biology ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 100 ◽  
Author(s):  
Biao Tang ◽  
Francesca Scarabel ◽  
Nicola Luigi Bragazzi ◽  
Zachary McCarthy ◽  
Michael Glazer ◽  
...  

Since the beginning of the COVID-19 pandemic, most Canadian provinces have gone through four distinct phases of social distancing and enhanced testing. A transmission dynamics model fitted to the cumulative case time series data permits us to estimate the effectiveness of interventions implemented in terms of the contact rate, probability of transmission per contact, proportion of isolated contacts, and detection rate. This allows us to calculate the control reproduction number during different phases (which gradually decreased to less than one). From this, we derive the necessary conditions in terms of enhanced social distancing, personal protection, contact tracing, quarantine/isolation strength at each escalation phase for the disease control to avoid a rebound. From this, we quantify the conditions needed to prevent epidemic rebound during de-escalation by simply reversing the escalation process.


2020 ◽  
Vol 56 (1) ◽  
pp. 2001483 ◽  
Author(s):  
Mike Lonergan ◽  
James D. Chalmers

By 21 May 2020, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) had caused more than 5 million cases of coronavirus 2019 (COVID-19) across more than 200 countries. Most countries with significant outbreaks have introduced social distancing or “lockdown” measures to reduce viral transmission. So the key question now is when, how and to what extent these measures can be lifted.Publicly available data on daily numbers of newly confirmed cases and mortality were used to fit regression models estimating trajectories, doubling times and the reproduction number (R0) of the disease, before and under the control measures. These data ran up to 21 May 2020, and were sufficient for analysis in 89 countries.The estimates of R0 before lockdown based on these data were broadly consistent with those previously published: between 2.0 and 3.7 in the countries with the largest number of cases available for analysis (USA, Italy, Spain, France and UK). There was little evidence to suggest that the restrictions had reduced R far below 1 in many places, with France having the most rapid reductions: R0 0.76 (95% CI 0.72–0.82) based on cases, and 0.77 (95% CI 0.73–0.80) based on mortality.Intermittent lockdown has been proposed as a means of controlling the outbreak while allowing periods of increased freedom and economic activity. These data suggest that few countries could have even 1 week per month unrestricted without seeing resurgence of the epidemic. Similarly, restoring 20% of the activity that has been prevented by the lockdowns looks difficult to reconcile with preventing the resurgence of the disease in most countries.


2020 ◽  
Author(s):  
Andrea Torneri ◽  
Pieter Libin ◽  
Joris Vanderlocht ◽  
Anne-Mieke Vandamme ◽  
Johan Neyts ◽  
...  

AbstractBackgroundCurrent outbreaks of COVID-19 are threatening the health care systems of several countries around the world. Control measures, based on isolation and quarantine, have been shown to decrease and delay the burden of the ongoing epidemic. With respect to the ongoing COVID-19 epidemic, recent modelling work shows that this intervention technique may be inadequate to control local outbreaks, even when perfect isolation is assumed. Furthermore, the effect of infectiousness prior to symptom onset combined with a significant proportion of asymptomatic infectees further complicates the use of contact tracing. Antivirals, which decrease the viral load and reduce the infectiousness, could be integrated in the control measures in order to augment the feasibility of controlling the epidemic.MethodsUsing a simulation-based model of viral transmission we tested the efficacy of different intervention measures for the control of COVID-19. For individuals that were identified through contact tracing, we evaluate two procedures: monitoring individuals for symptoms onset and testing of individuals. Moreover, we investigate the effect of a potent antiviral compound on the contact tracing process.FindingsThe use of an antiviral drug, in combination with contact tracing, quarantine and isolation, results in a significant decrease of the final size, the peak incidence, and increases the probability that the outbreak will fade out.InterpretationFor an infectious disease in which presymptomatic infections are plausible, an intervention measure based on contact tracing performs better when realized together with testing instead of monitoring, provided that the test is able to detect infections during the incubation period. In addition, in all tested scenarios, the model highlights the benefits of the administration of an antiviral drug in addition to quarantine, isolation and contact tracing. The resulting control measure, could be an effective strategy to control local and re-emerging out-breaks of COVID-19.


10.2196/22098 ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. e22098
Author(s):  
Ichiro Nakamoto ◽  
Ming Jiang ◽  
Jilin Zhang ◽  
Weiqing Zhuang ◽  
Yan Guo ◽  
...  

We evaluate a Bluetooth-based mobile contact-confirming app, COVID-19 Contact-Confirming Application (COCOA), which is being used in Japan to contain the spread of COVID-19, the disease caused by the novel virus termed SARS-COV-2. The app prioritizes the protection of users’ privacy from a variety of parties (eg, other users, potential attackers, and public authorities), enhances the capacity to balance the current load of excessive pressure on health care systems (eg, local triage of exposure risk and reduction of in-person hospital visits), increases the speed of responses to the pandemic (eg, automated recording of close contact based on proximity), and reduces operation errors and population mobility. The peer-to-peer framework of COCOA is intended to provide the public with dynamic and credible updates on the COVID-19 pandemic without sacrificing the privacy of their information. However, cautions must be exercised to address critical concerns, such as the rate of participation and delays in data sharing. The results of a simulation imply that the participation rate in Japan needs to be close 90% to effectively control the spread of COVID-19.


Author(s):  
Mirjam E. Kretzschmar ◽  
Ganna Rozhnova ◽  
Martin Bootsma ◽  
Michiel van Boven ◽  
Janneke van de Wijgert ◽  
...  

SummaryBackgroundWith confirmed cases of COVID-19 declining in many countries, lockdown measures are gradually being lifted. However, even if most social distancing measures are continued, other public health measures will be needed to control the epidemic. Contact tracing via conventional methods or mobile app technology is central to control strategies during deescalation of social distancing. We aimed to identify key factors for a contact tracing strategy (CTS) to be successful.MethodsWe evaluated the impact of timeliness and completeness in various steps of a CTS using a stochastic mathematical model with explicit time delays between time of infection and symptom onset, and between symptom onset, diagnosis by testing, and isolation (testing delay). The model also includes tracing of close contacts (e.g. household members) and casual contacts, followed by testing regardless of symptoms and isolation if positive, with different delays (tracing delay) and coverages (tracing coverage). We computed effective reproduction numbers of a CTS (Rcts) for a population with social distancing measures and various scenarios for isolation of index cases and tracing and quarantine of its contacts.FindingsFor the best-case scenario (testing and tracing delays of 0 days and tracing coverage of 80%), and assuming that around 40% of transmission occur before symptom onset, the model predicts that the effective reproduction number of 1.2 (with social distancing only) will be reduced to 0.8 by adding contact tracing. A testing delay of 2 days requires tracing delay to be at most 1 day, or tracing coverage to be at least 80% to keep Rcts below 1. With a testing/isolation delay of 3 days, even the most efficient CTS cannot reach Rcts values below 1. The effect of minimizing tracing delay (e.g., with app-based technology) declines with decreasing coverage of app use, but app-based tracing alone remains more effective than conventional tracing alone even with 20% coverage. The proportion of transmissions per index case that can be prevented depends on testing and tracing delays, and ranges from up to 80% in the best-case scenario (testing and tracing delays of 0 days) to 42% with a 3-day testing delay and 18% with a 5-day testing delay.InterpretationIn our model, minimizing testing delay had the largest impact on reducing onward transmissions. Optimizing testing and tracing coverage and minimizing tracing delays, for instance with app-based technology, further enhanced CTS effectiveness, with a potential to prevent up to 80% of all transmissions. Access to testing should therefore be optimized, and mobile app technology may reduce delays in the CTS process and optimize contact tracing coverage.Research in contextEvidence before this studyWe searched PubMed, bioRxiv, and medRxiv for articles published in English from January 1, 2020, to June 20, 2020, with the following keywords: (“2019-nCoV” OR “novel coronavirus” OR “COVID-19” OR “SARS-CoV-2”) AND “contact tracing” AND “model*”. Population-level modelling studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have suggested that isolation and tracing alone might not be sufficient to control outbreaks and additional measures might be required. However, few studies have focused on the effects of lifting individual measures once the first wave of the epidemic has been controlled. Lifting measures must be accompanied by effective contact tracing strategies (CTS) in order to keep the effective reproduction number below 1. A detailed analysis, with special emphasis on the effects of time delays in testing of index patients and tracing of contacts, has not been done.Added value of this studyWe performed a systematic analysis of the various steps required in the process of testing and diagnosing an index case as well as tracing and isolating possible secondary cases of the index case. We then used a stochastic transmission model which makes a distinction between close contacts (e.g. household members) and casual contacts to assess which steps and (possible) delays are crucial in determining the effectiveness of CTS. We evaluated how delays and the level of contact tracing coverage influence the effective reproduction number, and how fast CTS needs to be to keep the reproduction number below 1. We also analyzed what proportion of onward transmission can be prevented for short delays and high contact tracing coverage. Assuming that around 40% of transmission occurs before symptom onset, we found that keeping the time between symptom onset and testing and isolation of an index case short (<3 days) is imperative for a successful CTS. This implies that the process leading from symptom onset to receiving a positive test should be minimized by providing sufficient and easily accessible testing facilities. In addition, reducing contact-tracing delays also helps to keep the reproduction number below 1.Implications of all the available evidenceOur analyses highlight that CTS will only contribute to containment of COVID-19 if it can be organised in a way that time delays in the process from symptom onset to isolation of the index case and his/her contacts are very short. The process of conventional contact tracing should be reviewed and streamlined, while mobile app technology may offer a tool for gaining speed in the process. Reducing delay in testing subjects for SARS-CoV-2 should be a key objective of CTS.


2020 ◽  
Author(s):  
Valentina Rotondi ◽  
Liliana Andriano ◽  
Jennifer Beam Dowd ◽  
Melinda C. Mills

With the world experiencing one of the largest pandemics in one-hundred years, governments and policymakers are looking for scientific evidence to introduce rapid and effective policies. Here we provide evidence from two provinces in Italy with comparable early infection rates but different timing of mitigating policy measures. Lodi prohibited movement on February 23, 2020 and Bergamo 2 weeks later on March 8, before the entire lockdown of Italy on March 11. This comparison provides early evidence that rapid restriction of movement and social distancing measures may slow the transmission of the virus and “flatten the curve”, ultimately reducing pressure on health care systems


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Mor Saban ◽  
Tal Shachar

An outbreak of the novel coronavirus (COVID-19) that started in Wuhan, China, has spread quickly, with cases confirmed in 180 countries with broad impact on all health care systems. Currently, the absence of a COVID-19 vaccine or any definitive medication has led to increased use of non-pharmaceutical interventions, aimed at reducing contact rates in the population and thereby transmission of the virus, especially social distancing. These social distancing guidelines indirectly create two isolated populations at high-risk: the chronically ill and voluntary isolated persons who had contact with a verified patient or person returning from abroad. In this concept paper we describe the potential risk of these populations leading to an 80% reduction in total Emergency Department (ED) visits, including patients with an acute condition. In conclusion, alternative medical examination solutions so far do not provide adequate response to the at-risk population. The healthcare system must develop and offer complementary solutions that will enable access to health services even during these difficult times.


2020 ◽  
Author(s):  
Michael J Plank ◽  
Alex James ◽  
Audrey Lustig ◽  
Nicholas Steyn ◽  
Rachelle N Binny ◽  
...  

Digital tools are being developed to support contact tracing as part of the global effort to control the spread of COVID-19. These include smartphone apps, Bluetooth-based proximity detection, location tracking, and automatic exposure notification features. Evidence on the effectiveness of alternative approaches to digital contact tracing is so far limited. We use an age-structured branching process model of the transmission of COVID-19 in different settings to estimate the potential of manual contact tracing and digital tracing systems to help control the epidemic. We investigate the effect of the uptake rate and proportion of contacts recorded by the digital system on key model outputs: the effective reproduction number, the mean outbreak size after 30 days, and the probability of elimination. We show that effective manual contact tracing can reduce the effective reproduction number from 2.4 to around 1.5. The addition of a digital tracing system with a high uptake rate over 75% could further reduce the effective reproduction number to around 1.1. Fully automated digital tracing without manual contact tracing is predicted to be much less effective. We conclude that, for digital tracing systems to make a significant contribution to the control of COVID-19, they need be designed in close conjunction with public health agencies to support and complement manual contact tracing by trained professionals.


Sign in / Sign up

Export Citation Format

Share Document