scholarly journals Path-dependent Vortex Switching in Ferroelectric Nanoplate Junctions Toward a Memory Device Concept

2022 ◽  
Vol 9 ◽  
Author(s):  
Weiming Xiong ◽  
Weijin Chen ◽  
Yue Zheng

Ferroelectric vortex has attracted much attention as a promising candidate for memories with high density and high stability. It is a crucial problem to precisely manipulate the vortex chirality in order to utilize it to store information. Nevertheless, so far, a practical and direct strategy for vortex switching is still lacking. Moreover, the strong coupling of chirality between neighboring vortices in continuous systems like superlattices limits the application of ferroelectric-vortex-based memories. Here, we design a ferroelectric nanoplate junction to break the strong coupling between neighboring vortices. Phase-field simulation results demonstrate that the vortex chirality of the nanoplates could be efficiently tuned by sweeping local electric and thermal fields in the nanoplate junction. More importantly, the weak coupling between two neighboring nanoplates through the intermediate junction brings a deterministic vortex switching behavior. Based on this, we propose a concept of vortex memory devices. Our study provides an effective way to control the vortex chirality and suggests an opportunity for designing new memory devices based on ferroelectric vortex.

2008 ◽  
Vol 54 ◽  
pp. 470-473 ◽  
Author(s):  
Hun Jun Ha ◽  
J.M. Lee ◽  
M. Kim ◽  
O.H. Kim

We have studied the effect of various electrodes on non-volatile polymer memory devices. The ITO/PEDOT:PSS/Top electrode (TE) devices had bipolar switching behavior. The OFF current level of devices increased from 3×10-4 A to 3×10-3 A and the ON voltage decreased from 0.8 V to 0.5 V as the TE work function increased. The yield of devices decreased from over 50 % to under 10 % as the TE work function of devices increased. This result occurred because carrier injection was affected by the TE work function.


2016 ◽  
Vol 4 (46) ◽  
pp. 10967-10972 ◽  
Author(s):  
Sujaya Kumar Vishwanath ◽  
Jihoon Kim

The all-solution-based memory devices demonstrated excellent bipolar switching behavior with a high resistive switching ratio of 103, excellent endurance of more than 1000 cycles, stable retention time greater than 104s at elevated temperatures, and fast programming speed of 250 ns.


2011 ◽  
Vol 1337 ◽  
Author(s):  
B.D. Briggs ◽  
S.M. Bishop ◽  
K.D. Leedy ◽  
B. Butcher ◽  
R. L. Moore ◽  
...  

ABSTRACTHafnium oxide-based resistive memory devices have been fabricated on copper bottom electrodes. The HfOx active layers in these devices were deposited by atomic layer deposition at 250 °C with tetrakis(dimethylamido)hafnium(IV) as the metal precursor and an O2 plasma as the reactant. Depth profiles of the HfOx by x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a copper concentration on the order of five atomic percent throughout the HfOx film. This phenomenon has not been previously reported in resistive switching literature and therefore may have gone unnoticed by other investigators. The MIM structures fabricated from the HfOx exhibited non-polar behavior, independent of the top metal electrode (Ni, Pt, Al, Au). These results are analogous to the non-polar switching behavior observed by Yang et al. [2] for intentionally Cu-doped HfOx resistive memory devices. The distinguishing characteristic of the material structure produced in this research is that the copper concentration increases to 60 % in a conducting surface copper oxide layer ~20 nm thick. Lastly, the results from both sweep- and pulse-mode current-voltage measurements are presented and preliminary work on fabricating sub-100 nm devices is summarized.


2016 ◽  
Vol 40 (10) ◽  
pp. 8886-8891 ◽  
Author(s):  
Junfeng Li ◽  
Chenglong Yang ◽  
Ying Chen ◽  
Wen-Yong Lai

Morphologies of the amphiphilic perylene bisimide assemblies were controlled and switched by external stimuli to afford a good-performance WORM memory device.


2015 ◽  
Vol 1729 ◽  
pp. 53-58
Author(s):  
Brian L. Geist ◽  
Dmitri Strukov ◽  
Vladimir Kochergin

ABSTRACTResistive memory materials and devices (often called memristors) are an area of intense research, with metal/metal oxide/metal resistive elements a prominent example of such devices. Electroforming (the formation of a conductive filament in the metal oxide layer) represents one of the often necessary steps of resistive memory device fabrication that results in large and poorly controlled variability in device performance. In this contribution we present a numerical investigation of the electroforming process. In our model, drift and Ficks and Soret diffusion processes are responsible for movement of vacancies in the oxide material. Simulations predict filament formation and qualitatively agreed with a reduction of the forming voltage in structures with a top electrode. The forming and switching results of the study are compared with numerical simulations and show a possible pathway toward more repeatable and controllable resistive memory devices.


2017 ◽  
Vol 5 (37) ◽  
pp. 9799-9805 ◽  
Author(s):  
Guilin Chen ◽  
Peng Zhang ◽  
Lulu Pan ◽  
Lin Qi ◽  
Fucheng Yu ◽  
...  

A non-volatile resistive switching memory effect was observed in flexible memory device based on SrTiO3 nanosheets and polyvinylpyrrolidone composites.


Author(s):  
Jing Wang ◽  
Bailey Bedford ◽  
Chanle Chen ◽  
Ludi Miao ◽  
Binghcheng Luo

The light response and resistance switching behavior in BaTiO3 (BTO) films are studied for a symmetric Pt/BTO/Pt structure. The resistance of films as a function of time with and without ultraviolet light has been studied. Furthermore, resistance switching behavior was clearly observed based on the application of 365 nm wavelength ultraviolet light. Consequently, the polarities of resistance switching can be controlled by ultraviolet light when the energy is larger than the band excitation energy. It is proposed that the polarity of the resistance switching is dictated by the competition of the ferroelectricity and oxygen vacancy migration. This provides a new mechanism for modulating the state of ferroelectric resistive memory devices.


2018 ◽  
Vol 6 (11) ◽  
pp. 2724-2732 ◽  
Author(s):  
Junko Aimi ◽  
Po-Hung Wang ◽  
Chien-Chung Shih ◽  
Chih-Feng Huang ◽  
Takashi Nakanishi ◽  
...  

A novel strategy to control the OFET memory device performance has been demonstrated using a metallophthalocyanine-cored star-shaped polystyrene as a charge storage material.


Sign in / Sign up

Export Citation Format

Share Document