scholarly journals Vesicle-Mediated Control of Cell Function: The Role of Extracellular Matrix and Microenvironment

2018 ◽  
Vol 9 ◽  
Author(s):  
Gorjana Rackov ◽  
Noemi Garcia-Romero ◽  
Susana Esteban-Rubio ◽  
Josefa Carrión-Navarro ◽  
Cristobal Belda-Iniesta ◽  
...  
2016 ◽  
Vol 27 (19) ◽  
pp. 2885-2888 ◽  
Author(s):  
Charles H. Streuli

Integrins are cell surface receptors that bind cells to their physical external environment, linking the extracellular matrix to cell function. They are essential in the biology of all animals. In the late 1980s, we discovered that integrins are required for the ability of breast epithelia to do what they are programmed to do, which is to differentiate and make milk. Since then, integrins have been shown to control most other aspects of phenotype: to stay alive, to divide, and to move about. Integrins also provide part of the mechanism that allows cells to form tissues. Here I discuss how we discovered that integrins control mammary gland differentiation and explore the role of integrins as central architects of other aspects of cell behavior.


Endocrinology ◽  
2008 ◽  
Vol 150 (5) ◽  
pp. 2072-2079 ◽  
Author(s):  
Eva Hammar ◽  
Alejandra Tomas ◽  
Domenico Bosco ◽  
Philippe A. Halban

Extracellular matrix has a beneficial impact on β-cell spreading and function, but the underlying signaling pathways have yet to be fully elucidated. In other cell types, Rho, a well-characterized member of the family of Rho GTPases, and its effector Rho-associated kinase (ROCK), play an important role as downstream mediators of outside in signaling from extracellular matrix. Therefore, a possible role of the Rho-ROCK pathway in β-cell spreading, actin cytoskeleton dynamics, and function was investigated. Rho was inhibited using a new cell-permeable version of C3 transferase, whereas the activity of ROCK was repressed using the specific ROCK inhibitors H-1152 and Y-27632. Inhibition of Rho and of ROCK increased spreading and improved both short-term and prolonged glucose-stimulated insulin secretion but had no impact on basal secretion. Inhibition of this pathway led to a depolymerization of the actin cytoskeleton. Furthermore, the impact of the inhibition of ROCK on stimulated insulin secretion was acute and reversible, suggesting that rapid signaling such as phosphorylation is involved. Finally, quantification of the activity of RhoA indicated that the extracellular matrix represses RhoA activity. Overall these results show for the first time that the Rho-ROCK signaling pathway contributes to the stabilization of the actin cytoskeleton and inhibits glucose-stimulated insulin secretion in primary pancreatic β-cells. Furthermore, they indicate that inhibition of this pathway might be one of the mechanisms by which the extracellular matrix exerts its beneficial effects on pancreatic β-cell function.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Alice Leroux ◽  
Bruno Paiva dos Santos ◽  
Jacques Leng ◽  
Hugo Oliveira ◽  
Joëlle Amédée

Abstract Background Recent physiological and experimental data highlight the role of the sensory nervous system in bone repair, but its precise role on angiogenesis in a bone regeneration context is still unknown. Our previous work demonstrated that sensory neurons (SNs) induce the osteoblastic differentiation of mesenchymal stem cells, but the influence of SNs on endothelial cells (ECs) was not studied. Methods Here, in order to study in vitro the interplay between SNs and ECs, we used microfluidic devices as an indirect co-culture model. Gene expression analysis of angiogenic markers, as well as measurements of metalloproteinases protein levels and enzymatic activity, were performed. Results We were able to demonstrate that two sensory neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), were involved in the transcriptional upregulation of angiogenic markers (vascular endothelial growth factor, angiopoietin 1, type 4 collagen, matrix metalloproteinase 2) in ECs. Co-cultures of ECs with SNs also increased the protein level and enzymatic activity of matrix metalloproteinases 2 and 9 (MMP2/MMP9) in ECs. Conclusions Our results suggest a role of sensory neurons, and more specifically of CGRP and SP, in the remodelling of endothelial cells extracellular matrix, thus supporting and enhancing the angiogenesis process.


2020 ◽  
Vol 21 (10) ◽  
pp. 3686 ◽  
Author(s):  
Eva Andreuzzi ◽  
Alessandra Capuano ◽  
Evelina Poletto ◽  
Eliana Pivetta ◽  
Albina Fejza ◽  
...  

Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients’ outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.


Blood ◽  
2016 ◽  
Vol 128 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Frederic Lagarrigue ◽  
Chungho Kim ◽  
Mark H. Ginsberg

Abstract Integrin adhesion receptors mediate the adhesion of blood cells, such as leukocytes, to other cells, such as endothelial cells. Integrins also are critical for anchorage of hematopoietic precursors to the extracellular matrix. Blood cells can dynamically regulate the affinities of integrins for their ligands (“activation”), an event central to their functions. Here we review recent progress in understanding the mechanisms of integrin activation with a focus on the functions of blood cells. We discuss how talin binding to the integrin β cytoplasmic domain, in conjunction with the plasma membrane, induces long-range allosteric rearrangements that lead to integrin activation. Second, we review our understanding of how signaling events, particularly those involving Rap1 small guanosine triphosphate (GTP)hydrolases, can regulate the talin–integrin interaction and resulting activation. Third, we review recent findings that highlight the role of the Rap1-GTP-interacting adapter molecule (RIAM), encoded by the APBB1IP gene, in leukocyte integrin activation and consequently in leukocyte trafficking.


2021 ◽  
Vol 8 ◽  
Author(s):  
Meagan McMahon ◽  
Siying Ye ◽  
Jess Pedrina ◽  
Daniel Dlugolenski ◽  
John Stambas

Remodelling of the extracellular matrix (ECM) by ECM metalloproteinases is increasingly being associated with regulation of immune cell function. ECM metalloproteinases, including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs) and ADAMs with Thombospondin-1 motifs (ADAMTS) play a vital role in pathogen defence and have been shown to influence migration of immune cells. This review provides a current summary of the role of ECM enzymes in immune cell migration and function and discusses opportunities and limitations for development of diagnostic and therapeutic strategies targeting metalloproteinase expression and activity in the context of infectious disease.


1989 ◽  
Vol 11 (4-5) ◽  
pp. 348-360 ◽  
Author(s):  
Mary Bartlett Bunge ◽  
Richard P. Bunge ◽  
Naomi Kleitman ◽  
Andy C. Dean

2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
S Barkha ◽  
M Gegg ◽  
H Lickert ◽  
M Königshoff

Sign in / Sign up

Export Citation Format

Share Document