scholarly journals Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis

2020 ◽  
Vol 21 (10) ◽  
pp. 3686 ◽  
Author(s):  
Eva Andreuzzi ◽  
Alessandra Capuano ◽  
Evelina Poletto ◽  
Eliana Pivetta ◽  
Albina Fejza ◽  
...  

Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients’ outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.

2014 ◽  
pp. S251-S262 ◽  
Author(s):  
I. JOCHMANOVÁ ◽  
T. ZELINKA ◽  
J. WIDIMSKÝ ◽  
K. PACAK

Hypoxia-inducible factors (HIFs) are transcription factors controlling energy, iron metabolism, erythropoiesis, and development. Dysregulation of these proteins contributes to tumorigenesis and cancer progression. Recent findings revealed the important role of HIFs in the pathogenesis of neuroendocrine tumors, especially pheochromocytoma (PHEO) and paraganglioma (PGL). PHEOs and PGLs are catecholamine-producing tumors arising from sympathetic- or parasympathetic-derived chromaffin tissue. To date, eighteen PHEO/PGL susceptibility genes have been identified. Based on the main signaling pathways, PHEOs/PGLs have been divided into two clusters, pseudohypoxic cluster 1 and cluster 2, rich in kinase receptor signaling and protein translation pathways. Recent data suggest that both clusters are interconnected via the HIF signaling and its role in tumorigenesis is supported by newly described somatic and germline mutations in HIF2A gene in patients with PHEOs/PGLs associated with polycythemia, and in some of them also with somatostatinoma. Moreover, HIFα signaling has also been shown to be upregulated in neuroendocrine tumors other than PHEO/PGL. Some of these tumors are components of hereditary tumor syndromes which can be associated with PHEO/PGL, but also in ileal carcinoids or melanoma. HIF signaling appears to be one of the crucial players in tumorigenesis, which could suggest new therapeutic approaches for treatment of neuroendocrine tumors.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Anne Ackermann ◽  
Angela Brieger

Nonerythroid spectrinαII (SPTAN1) is an important cytoskeletal protein that ensures vital cellular properties including polarity and cell stabilization. In addition, it is involved in cell adhesion, cell-cell contact, and apoptosis. The detection of altered expression of SPTAN1 in tumors indicates that SPTAN1 might be involved in the development and progression of cancer. SPTAN1 has been described in cancer and therapy response and proposed as a potential marker protein for neoplasia, tumor aggressiveness, and therapeutic efficiency. On one hand, the existing data suggest that overexpression of SPTAN1 in tumor cells reflects neoplastic and tumor promoting activity. On the other hand, nuclear SPTAN1 can have tumor suppressing effects by enabling DNA repair through interaction with DNA repair proteins. Moreover, SPTAN1 cleavage products occur during apoptosis and could serve as markers for the efficacy of cancer therapy. Due to SPTAN1’s multifaceted functions and its role in adhesion and migration, SPTAN1 can influence tumor growth and progression in both positive and negative directions depending on its specific regulation. This review summarizes the current knowledge on SPTAN1 in cancer and depicts several mechanisms by which SPTAN1 could impact tumor development and aggressiveness.


Physiology ◽  
2017 ◽  
Vol 32 (2) ◽  
pp. 126-140 ◽  
Author(s):  
Laura Bierhansl ◽  
Lena-Christin Conradi ◽  
Lucas Treps ◽  
Mieke Dewerchin ◽  
Peter Carmeliet

The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Alice Leroux ◽  
Bruno Paiva dos Santos ◽  
Jacques Leng ◽  
Hugo Oliveira ◽  
Joëlle Amédée

Abstract Background Recent physiological and experimental data highlight the role of the sensory nervous system in bone repair, but its precise role on angiogenesis in a bone regeneration context is still unknown. Our previous work demonstrated that sensory neurons (SNs) induce the osteoblastic differentiation of mesenchymal stem cells, but the influence of SNs on endothelial cells (ECs) was not studied. Methods Here, in order to study in vitro the interplay between SNs and ECs, we used microfluidic devices as an indirect co-culture model. Gene expression analysis of angiogenic markers, as well as measurements of metalloproteinases protein levels and enzymatic activity, were performed. Results We were able to demonstrate that two sensory neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), were involved in the transcriptional upregulation of angiogenic markers (vascular endothelial growth factor, angiopoietin 1, type 4 collagen, matrix metalloproteinase 2) in ECs. Co-cultures of ECs with SNs also increased the protein level and enzymatic activity of matrix metalloproteinases 2 and 9 (MMP2/MMP9) in ECs. Conclusions Our results suggest a role of sensory neurons, and more specifically of CGRP and SP, in the remodelling of endothelial cells extracellular matrix, thus supporting and enhancing the angiogenesis process.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 195
Author(s):  
Francisca Dias ◽  
Cristina Almeida ◽  
Ana Luísa Teixeira ◽  
Mariana Morais ◽  
Rui Medeiros

The development and progression of colorectal cancer (CRC) have been associated with genetic and epigenetic alterations and more recently with changes in cell metabolism. Amino acid transporters are key players in tumor development, and it is described that tumor cells upregulate some AA transporters in order to support the increased amino acid (AA) intake to sustain the tumor additional needs for tumor growth and proliferation through the activation of several signaling pathways. LAT1 and ASCT2 are two AA transporters involved in the regulation of the mTOR pathway that has been reported as upregulated in CRC. Some attempts have been made in order to develop therapeutic approaches to target these AA transporters, however none have reached the clinical setting so far. MiRNA-based therapies have been gaining increasing attention from pharmaceutical companies and now several miRNA-based drugs are currently in clinical trials with promising results. In this review we combine a bioinformatic approach with a literature review in order to identify a miRNA profile with the potential to target both LAT1 and ASCT2 with potential to be used as a therapeutic approach against CRC.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 723
Author(s):  
Hafid Ait-Oufella ◽  
Jean-Rémi Lavillegrand ◽  
Alain Tedgui

Experimental studies have provided strong evidence that chronic inflammation triggered by the sub-endothelial accumulation of cholesterol-rich lipoproteins in arteries is essential in the initiation and progression of atherosclerosis. Recent clinical trials highlighting the efficacy of anti-inflammatory therapies in coronary patients have confirmed that this is also true in humans Monocytes/macrophages are central cells in the atherosclerotic process, but adaptive immunity, through B and T lymphocytes, as well as dendritic cells, also modulates the progression of the disease. Analysis of the role of different T cell subpopulations in murine models of atherosclerosis identified effector Th1 cells as proatherogenic, whereas regulatory T cells (Tregs) have been shown to protect against atherosclerosis. For these reasons, better understanding of how Tregs influence the atherosclerotic process is believed to provide novel Treg-targeted therapies to combat atherosclerosis. This review article summarizes current knowledge about the role of Tregs in atherosclerosis and discusses ways to enhance their function as novel immunomodulatory therapeutic approaches against cardiovascular disease.


Author(s):  
Natalia Bryniarska-Kubiak ◽  
Andrzej Kubiak ◽  
Małgorzata Lekka ◽  
Agnieszka Basta-Kaim

AbstractNervous system diseases are the subject of intensive research due to their association with high mortality rates and their potential to cause irreversible disability. Most studies focus on targeting the biological factors related to disease pathogenesis, e.g. use of recombinant activator of plasminogen in the treatment of stroke. Nevertheless, multiple diseases such as Parkinson’s disease and Alzheimer’s disease still lack successful treatment. Recently, evidence has indicated that physical factors such as the mechanical properties of cells and tissue and topography play a crucial role in homeostasis as well as disease progression. This review aims to depict these factors’ roles in the progression of nervous system diseases and consequently discusses the possibility of new therapeutic approaches. The literature is reviewed to provide a deeper understanding of the roles played by physical factors in nervous system disease development to aid in the design of promising new treatment approaches. Graphic abstract


2014 ◽  
Vol 325 (2) ◽  
pp. 58-64 ◽  
Author(s):  
Tuula Salo ◽  
Marilena Vered ◽  
Ibrahim O. Bello ◽  
Pia Nyberg ◽  
Carolina Cavalcante Bitu ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Gorjana Rackov ◽  
Noemi Garcia-Romero ◽  
Susana Esteban-Rubio ◽  
Josefa Carrión-Navarro ◽  
Cristobal Belda-Iniesta ◽  
...  

2018 ◽  
Vol 4 (4) ◽  
pp. 41 ◽  
Author(s):  
Wilson K. M. Wong ◽  
Anja E. Sørensen ◽  
Mugdha V. Joglekar ◽  
Anand A. Hardikar ◽  
Louise T. Dalgaard

In this review, we provide an overview of the current knowledge on the role of different classes of non-coding RNAs for islet and β-cell development, maturation and function. MicroRNAs (miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and patterns of the roles of different miRNAs in pancreatic fetal development, islet and β-cell maturation and function are now emerging. Specific miRNAs are dynamically regulated throughout the period of pancreas development, during islet and β-cell differentiation as well as in the perinatal period, where a burst of β-cell replication takes place. The role of long non-coding RNAs (lncRNA) in islet and β-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of ultra-deep RNA sequencing has enabled the identification of highly islet- or β-cell-selective lncRNA transcripts expressed at low levels. Their roles in islet cells are currently only characterized for a few of these lncRNAs, and these are often associated with β-cell super-enhancers and regulate neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas development and β-cell function. Altogether, these observations support significant and important actions of ncRNAs in β-cell development and function.


Sign in / Sign up

Export Citation Format

Share Document