scholarly journals Conditioned Media of Choroid Plexus Epithelium Cells Attenuates High Pi-Induced Calcification of MOVAS Cells by Inhibiting ROS-Mediated Signal Pathways

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Hui ◽  
Mei Wang ◽  
Lijun Zhang ◽  
Ji Liu ◽  
Mengen Wang ◽  
...  

Vascular calcification was an independent risk of cardiovascular and cerebrovascular diseases (CCDs). Studies reported that conditioned media of choroid plexus epithelium cells (CPECs-CM) showed potential neuroprotective effects. However, the protective effect of CPECs-CM against vascular calcification (VC) has not been reported yet. Herein, high phosphate (HPi)–induced calcification model in mouse aortic vascular smooth muscle cells (MOVAS) was established, and the protective effects and underlying mechanism of CPECs-CM against HPi-induced calcification were explored. The results indicated that CPEC cells were successfully isolated and cultured, and CPECs-CM co-treatment significantly inhibited HPi-induced calcification of MOVAS cells through blocking alkaline phosphatase activity and expression. CPECs-CM co-treatment also suppressed reactive oxide species–mediated DNA damage in HPi-treated MOVAS cells. Moreover, dysfunction of MAPKs and PI3K/AKT pathways both contributed to HPi-induced calcification of MOVAS cells, and CPECs-CM co-treatment attenuated HPi-induced calcification by normalizing MAPKs and PI3K/AKT expression. Taken together, our findings provide evidence that CPECs-CM had the potential to inhibit vascular calcification with potent application in chemoprevention and chemotherapy of human CCD.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Fang Su ◽  
Shanshan Yang ◽  
Hongcai Wang ◽  
Zhenkui Qiao ◽  
Hong Zhao ◽  
...  

It is generally accepted that the amyloid β (Aβ) peptide toxicity contributes to neuronal loss and is involved in the initiation and progression of Alzheimer’s disease (AD). Cold-inducible RNA-binding protein (CIRBP) is reported to be a general stress-response protein, which is induced by different stress conditions. Previous reports have shown the neuroprotective effects of CIRBP through the suppression of apoptosis via the Akt and ERK pathways. The objective of this study is to examine the effect of CIRBP against Aβ-induced toxicity in cultured rat primary cortical neurons and attempt to uncover its underlying mechanism. Here, MTT, LDH release, and TUNEL assays showed that CIRBP overexpression protected against both intracellular amyloid β- (iAβ-) induced and Aβ25-35-induced cytotoxicity in rat primary cortical neurons. Electrophysiological changes responsible for iAβ-induced neuronal toxicity, including an increase in neuronal resting membrane potentials and a decrease in K+ currents, were reversed by CIRBP overexpression. Western blot results further showed that Aβ25-35 treatment significantly increased the level of proapoptotic protein Bax, cleaved caspase-3, and cleaved caspase-9 and decreased the level of antiapoptotic factor Bcl-2, but were rescued by CIRBP overexpression. Furthermore, CIRBP overexpression prevented the elevation of ROS induced by Aβ25-35 treatment by decreasing the activities of oxidative biomarker and increasing the activities of key enzymes in antioxidant system. Taken together, our findings suggested that CIRBP exerted protective effects against neuronal amyloid toxicity via antioxidative and antiapoptotic pathways, which may provide a promising candidate for amyloid-based AD prevention or therapy.


Author(s):  
Qilong Zhang ◽  
Zhijia Fan ◽  
wei xue ◽  
Fanfan Sun ◽  
Huaqing Zhu ◽  
...  

Chronic cerebral hypoperfusion (CCH), as a critical factor of chronic cerebrovascular diseases, has greatly influenced the health of patients with vascular dementia (VD). The putative protective effects of vitexin on the CCH need further investigations. In the current study, the role of vitexin and its underlying mechanism were investigated with permanent bilateral common carotid artery occlusion (2VO) in rats as well as HT22 cells with OGD/R injury model. The results demonstrated that vitexin improved cognitive dysfunction as well as alleviated pathological neuronal damage in HE and TUNEL results. The decreased levels of Epac1, Epac2, Rap1 and p-ERK were reversed by vitexin in rats with CCH. Furthermore, this study indicated that vitexin alleviated CCH-induced inflammation injuries by reducing the expression of NLRP3, Caspase-1, IL-1β, IL-6, and cleaved Caspase-3. In vitro, vitexin increased the expression of Epac1 and Epac2, decreased the activation of the NLRP3-mediated inflammation, and improved cell viability. Taken together, our findings suggest that vitexin can reduce the degree of the progressing pathological damage in the cortex and hippocampus and inhibit further deterioration of cognitive function in rats with CCH. Epac and NLRP3 can be regulated by vitexin, which provides enlightenment for the protection of CCH injury.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bingjie Yang ◽  
Guodong Luo ◽  
Chen Zhang ◽  
Luqiu Feng ◽  
Xianmei Luo ◽  
...  

AbstractPseudorabies virus (PRV) infection can elicit nervous system disorders. Curcumin has been reported to have neuroprotective effects. However, whether curcumin can protect neurons against PRV infection and the underlying mechanisms remain unclear. In the present study, for the first time, the protective effects of curcumin against PRV-induced oxidative stress, apoptosis, and mitochondrial dysfunction in rat hippocampal neurons and the brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway were investigated. Results indicated that PRV with a titer of 3.06 × 106 TCID50 (50% tissue culture infective dose) induced oxidative damage of hippocampal neurons 2 h post-infection and that 10 μM curcumin improved the viability of PRV-infected hippocampal neurons. Blocking the BDNF/TrkB pathway reversed the neuroprotective effects of curcumin, which were imparted by decreasing the PRV-induced upregulation of nitric oxide synthase expression, repressing the PRV-activated mitochondrial apoptotic pathway, and mitochondrial dysfunction. To conclude, curcumin exhibited a neuroprotective role against PRV infection by upregulating the BDNF/TrkB pathway. This study provides insight into the anti-PRV neuroprotective application of curcumin and the underlying mechanism in the prophylaxis and treatment of neurological disorders caused by PRV infection.


2020 ◽  
Author(s):  
Lvkeng Luo ◽  
Shuling Wu ◽  
Ruiqi Chen ◽  
Hongyu Rao ◽  
Wei Peng ◽  
...  

Abstract Background: Naoshuantong capsule (NSTC) is an oral Chinese medicine formula composed of Typhae Pollen, Radix Paeoniae Rubra Curcumae Radix Gastrodiae Rhizoma and Radix Rhapontici. It has been widely used at the acute and recovery stage of ischemic stroke since 2001. Comparing with its wide clinical application, there are only few studies emphasize on investigating its pharmacological effects. Methods:To more generally elucidate the underlying mechanisms in this study, we identified active ingredients in NSTC by a network pharmacology approach based on transcriptomics analysis and pharmacological experiments. Modified neurological severity scores and morphometric analysis using Nissl staining were employed to evaluate the neuroprotective effects of NSTC on ischemia stroke in mice. Results: The results showed that NSTC had preventive and protective effects on ischemia stroke, featuring repair of brain tissue during the sub-acute stage of stroke. This may attribute to the underlying mechanisms including anti-inflammatory, antioxidant, and anti-apoptotic activities, as well as an attenuation of excitatory amino acids (EAAs) toxicity of the active ingredients, especially the most active apigenin, from NSTC. Specifically, naringenin, calycosin, gastrodin, caffeic acid, paeoniflorin, and β -elemene seem to be also pharmacological active substances responsible for the anti-inflammatory effects. Meanwhile, 13-hydroxygemone, gastrodin, and p-hydroxybenzyl alcohol contributed to the attenuation of EAAs toxicity Furthermore, apigenin, naringenin, calycosin, gastrodin, and β-elemene accelerated the repair of brain ischemic tissue by up-regulating the expression of TGF-β1 levels.Conclusions: The present study identifies the active ingredients of NSTC and illustrates the underlying mechanism using a combination of network pharmacology, transcriptomics analysis, and pharmacological experiments.


2020 ◽  
Author(s):  
Lvkeng Luo ◽  
Shuling Wu ◽  
Ruiqi Chen ◽  
Hongyu Rao ◽  
Wei Peng ◽  
...  

Abstract Background: Naoshuantong capsule (NSTC) is an oral Chinese medicine formula composed of Typhae Pollen, Radix Paeoniae Rubra, Curcumae Radix, Gastrodiae Rhizoma and Radix Rhapontici. It has been widely used at the acute and recovery stage of ischemic stroke since 2001. Comparing with its wide clinical application, there are only few studies emphasize on investigating its pharmacological effects.Methods:To more generally elucidate the underlying mechanisms in this study, we identified active ingredients in NSTC by a network pharmacology approach based on transcriptomics analysis and pharmacological experiments. Modified neurological severity scores and morphometric analysis using Nissl staining were employed to evaluate the neuroprotective effects of NSTC on ischemia stroke in mice.Results: The results showed that NSTC had preventive and protective effects on ischemia stroke, featuring repair of brain tissue during the sub-acute stage of stroke. This may attribute to the underlying mechanisms including anti-inflammatory, antioxidant, and anti-apoptotic activities, as well as an attenuation of excitatory amino acids (EAAs) toxicity of the active ingredients, especially the most active apigenin, from NSTC. Specifically, naringenin, calycosin, gastrodin, caffeic acid, paeoniflorin, and β -elemene seem to be also pharmacological active substances responsible for the anti-inflammatory effects. Meanwhile, 13-hydroxygemone, gastrodin, and p-hydroxybenzyl alcohol contributed to the attenuation of EAAs toxicity Furthermore, apigenin, naringenin, calycosin, gastrodin, and β-elemene accelerated the repair of brain ischemic tissue by up-regulating the expression of TGF-β1 levels.Conclusions: The present study identifies the active ingredients of NSTC and illustrates the underlying mechanism using a combination of network pharmacology, transcriptomics analysis, and pharmacological experiments.


2020 ◽  
Author(s):  
Lvkeng Luo ◽  
Shuling Wu ◽  
Ruiqi Chen ◽  
Hongyu Rao ◽  
Wei Peng ◽  
...  

Abstract Background Naoshuantong capsule (NSTC) is an oral Chinese medicine formula composed of Typhae Pollen (TP), Radix Paeoniae Rubra (PR), Curcumae Radix (CR), Gastrodiae Rhizoma (GR) and Radix Rhapontici (RR). It has been widely used at the acute and recovery stage of ischemic stroke since 2001. Comparing with its wide clinical application, there are only few studies emphasize on investigating its pharmacological effects. Methods To more generally elucidate the underlying mechanisms in this study, we identified active ingredients in NSTC by a network pharmacology approach based on transcriptomics analysis and pharmacological experiments. Modified neurological severity scores (mNSS) and morphometric analysis using Nissl staining were employed to evaluate the neuroprotective effects of NSTC on ischemia stroke in mice. Results The results showed that NSTC had preventive and protective effects on ischemia stroke, featuring repair of brain tissue during the sub-acute stage of stroke. This may attribute to the underlying mechanisms including anti-inflammatory, antioxidant, and anti-apoptotic activities, as well as an attenuation of excitatory amino acids (EAAs) toxicity of the active ingredients, especially the most active apigenin, from NSTC. Specifically, naringenin, calycosin, gastrodin, caffeic acid, paeoniflorin, and β -elemene seem to be also pharmacological active substances responsible for the anti-inflammatory effects. Meanwhile, 13-hydroxygemone, gastrodin, and p-hydroxybenzyl alcohol contributed to the attenuation of EAAs toxicity Furthermore, apigenin, naringenin, calycosin, gastrodin, and β-elemene accelerated the repair of brain ischemic tissue by up-regulating the expression of TGF-β1 levels. Conclusions The present study identifies the active ingredients of NSTC and illustrates the underlying mechanism using a combination of network pharmacology, transcriptomics analysis, and pharmacological experiments.


Author(s):  
Zahra Azizi ◽  
◽  
Samira Choopani ◽  
Mona Salimi ◽  
Nahid Majlessi ◽  
...  

Introduction: We have reported that thymol and carvacrol can improve cognitive abilities in Alzheimer’s disease (AD) rat model. However, the mechanism of their action is not yet fully understood. Recently, our in vitro results suggested that PC12 cell death-induced by Aβ25-35 can be protected by thymol and carvacrol via PKC and ROS pathways. So, we hypothesize that the mechanisms of thymol and carvacrol in improving the learning impairment in AD rat model may be related to their effects on PKC. So, the activity of PKC and protein expression levels of PKCα was examined in the hippocampal cells of AD rat model. Methods: To examine thymol and carvacrol effects, we performed behavioral test in AD rat model induced by Aβ25–35 neurotoxicity. To access the underlying mechanism of protective effects, western blotting was performed with antibodies against PKCα. We also measured PKC activity assay by Elisa. Histopathological studies were carried out in hippocampus by hematoxylin & eosin (H&E). Results: It was shown that escape latency increased in Aβ-received rats compared to control group and thymol and carvacrol reversed this deficit. Furthermore, these compouds could enhance PKC activity, and increase the PKCα expression ratio. Moreover, H&E showed that Aβ caused shrinkage of the CA1 pyramidal neurons. However, thymol and carvacrol treatments could prevent this effect of Aβ peptides. Conclusions: This study suggests that Aβ results in memory decline and histochemical disturbances in hippocampus. Moreover, these results revealed that thymol and carvacrol could have protective effects on cognition in AD-like models via PKC activation.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Lvkeng Luo ◽  
Shuling Wu ◽  
Ruiqi Chen ◽  
Hongyu Rao ◽  
Wei Peng ◽  
...  

Abstract Background Naoshuantong capsule (NSTC) is an oral Chinese medicine formula composed of Typhae Pollen, Radix Paeoniae Rubra, Curcumae Radix, Gastrodiae Rhizoma and Radix Rhapontici. It has been widely used at the acute and recovery stage of ischemic stroke since 2001. Comparing with its wide clinical application, there are only few studies emphasize on investigating its pharmacological effects. Methods To more generally elucidate the underlying mechanisms in this study, we identified active ingredients in NSTC by a network pharmacology approach based on transcriptomics analysis and pharmacological experiments. Modified neurological severity scores and morphometric analysis using Nissl staining were employed to evaluate the neuroprotective effects of NSTC on ischemia stroke in mice. Results The results showed that NSTC had preventive and protective effects on ischemia stroke, featuring repair of brain tissue during the sub-acute stage of stroke. This may attribute to the underlying mechanisms including anti-inflammatory, antioxidant, and anti-apoptotic activities, as well as an attenuation of excitatory amino acids (EAAs) toxicity of the active ingredients, especially the most active apigenin, from NSTC. Specifically, naringenin, calycosin, gastrodin, caffeic acid, paeoniflorin, and β-elemene seem to be also pharmacological active substances responsible for the anti-inflammatory effects. Meanwhile, 13-hydroxygemone, gastrodin, and p-hydroxybenzyl alcohol contributed to the attenuation of EAAs toxicity Furthermore, apigenin, naringenin, calycosin, gastrodin, and β-elemene accelerated the repair of brain ischemic tissue by up-regulating the expression of TGF-β1 levels. Conclusions The present study identifies the active ingredients of NSTC and illustrates the underlying mechanism using a combination of network pharmacology, transcriptomics analysis, and pharmacological experiments.


Author(s):  
B. Van Deurs ◽  
J. K. Koehler

The choroid plexus epithelium constitutes a blood-cerebrospinal fluid (CSF) barrier, and is involved in regulation of the special composition of the CSF. The epithelium is provided with an ouabain-sensitive Na/K-pump located at the apical surface, actively pumping ions into the CSF. The choroid plexus epithelium has been described as “leaky” with a low transepithelial resistance, and a passive transepithelial flux following a paracellular route (intercellular spaces and cell junctions) also takes place. The present report describes the structural basis for these “barrier” properties of the choroid plexus epithelium as revealed by freeze fracture.Choroid plexus from the lateral, third and fourth ventricles of rats were used. The tissue was fixed in glutaraldehyde and stored in 30% glycerol. Freezing was performed either in liquid nitrogen-cooled Freon 22, or directly in a mixture of liquid and solid nitrogen prepared in a special vacuum chamber. The latter method was always used, and considered necessary, when preparations of complementary (double) replicas were made.


2019 ◽  
Vol 25 (6) ◽  
pp. 710-714 ◽  
Author(s):  
Ekaterina V. Konstantinova ◽  
Natalia S. Chipigina ◽  
Marina H. Shurdumova ◽  
E.I. Kovalenko ◽  
Alexander M. Sapozhnikov

Acute focal ischemia is a main factor of pathogenesis of a number of widespread cardiovascular and cerebrovascular diseases, in particular, myocardial infarction and ischemic stroke. It is known that under the conditions of ischemia expression of intracellular heat shock proteins (HSPs), especially HSP70, grows greatly irrespective of the cell type. This stress-induced cell response is connected with cytoprotective properties of HSP70. The protective functions of HSP70 contribute to the cell survival under adverse conditions and inhibit development of programmed cell death. It was shown, that the level of HSP70 increases in cardiomyocytes and brain cells in response to ischemia, that was connected with cardioprotective and neuroprotective effects. Besides, in recent years, clinical studies of HSP70 have demonstrated elevated level of HSP70 in peripheral blood lymphocytes in groups of patients with ischemic stroke and myocardial infarction. This review indicates that HSP70 can serve as a target for developing new approaches to diagnostics and therapy of cardiovascular and cerebrovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document