scholarly journals Severe Acute Respiratory Syndrome Coronavirus 2 and Male Reproduction: Relationship, Explanations, and Clinical Remedies

2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Xu ◽  
Liting He ◽  
Yuan Zhang ◽  
Zhiyong Hu ◽  
Yufang Su ◽  
...  

Coronavirus disease 2019 (COVID-2019) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic and worldwide public health emergency, having drawn a lot of attention around the world. The pathogenesis of COVID-19 is characterized by infecting angiotensin-converting enzyme 2 (ACE2)-expressing cells, including testis-specific cells, namely, Leydig, Sertoli, and spermatogenic cells, which are closely related to male reproduction. This leads to aberrant hyperactivation of the immune system generating damage to the infected organs. An impairment in testicular function through uncontrolled immune responses alerts more attention to male infertility. Meanwhile, the recent clinical data indicate that the infection of the human testis with SARS-CoV-2 may impair male germ cell development, leading to germ cell loss and higher immune cell infiltration. In this review, we investigated the evidence of male reproductive dysfunction associated with the infection with SARS-CoV-2 and its possible immunological explanations and clinical remedies.

2021 ◽  
Vol 22 (3) ◽  
pp. 1118
Author(s):  
Abdulaziz Alamri ◽  
Derek Fisk ◽  
Deepak Upreti ◽  
Sam K. P. Kung

Dendritic cells (DC) connect the innate and adaptive arms of the immune system and carry out numerous roles that are significant in the context of viral disease. Their functions include the control of inflammatory responses, the promotion of tolerance, cross-presentation, immune cell recruitment and the production of antiviral cytokines. Based primarily on the available literature that characterizes the behaviour of many DC subsets during Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), we speculated possible mechanisms through which DC could contribute to COVID-19 immune responses, such as dissemination of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to lymph nodes, mounting dysfunctional inteferon responses and T cell immunity in patients. We highlighted gaps of knowledge in our understanding of DC in COVID-19 pathogenesis and discussed current pre-clinical development of therapies for COVID-19.


2020 ◽  
Vol 318 (6) ◽  
pp. E878-E880 ◽  
Author(s):  
Johnny S. Younis ◽  
Zaid Abassi ◽  
Karl Skorecki

The viral pandemic of the coronavirus disease 2019 (COVID-19), generated by a novel mutated severe acute respiratory syndrome coronavirus (SARS-CoV-2), has become a serious worldwide public health emergency, evolving exponentially. While the main organ targeted in this disease is the lungs, other vital organs, such as the heart and kidney, may be implicated. The main host receptor of the SARS-CoV-2 is angiotensin converting enzyme 2 (ACE2), a major component of the renin-angiotensin-aldosterone system (RAAS). The ACE2 is also involved in testicular male regulation of steroidogenesis and spermatogenesis. As the SARS-CoV-2 may have the potential to infect the testis via ACE2 and adversely affect male reproductive system, it is essential to commence with targeted studies to learn from the current pandemic, with the possibility of preemptive intervention, depending on the findings and time course of the continuing pandemic.


BMC Medicine ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Melissa D. Tharmalingam ◽  
Gabriele Matilionyte ◽  
William H. B. Wallace ◽  
Jan-Bernd Stukenborg ◽  
Kirsi Jahnukainen ◽  
...  

Abstract Background Clinical studies indicate chemotherapy agents used in childhood cancer treatment regimens may impact future fertility. However, effects of individual agents on prepubertal human testis, necessary to identify later risk, have not been determined. The study aimed to investigate the impact of cisplatin, commonly used in childhood cancer, on immature (foetal and prepubertal) human testicular tissues. Comparison was made with carboplatin, which is used as an alternative to cisplatin in order to reduce toxicity in healthy tissues. Methods We developed an organotypic culture system combined with xenografting to determine the effect of clinically-relevant exposure to platinum-based chemotherapeutics on human testis. Human foetal and prepubertal testicular tissues were cultured and exposed to cisplatin, carboplatin or vehicle for 24 h, followed by 24–240 h in culture or long-term xenografting. Survival, proliferation and apoptosis of prepubertal germ stem cell populations (gonocytes and spermatogonia), critical for sperm production in adulthood, were quantified. Results Cisplatin exposure resulted in a significant reduction in the total number of germ cells (− 44%, p < 0.0001) in human foetal testis, which involved an initial loss of gonocytes followed by a significant reduction in spermatogonia. This coincided with a reduction (− 70%, p < 0.05) in germ cell proliferation. Cisplatin exposure resulted in similar effects on total germ cell number (including spermatogonial stem cells) in prepubertal human testicular tissues, demonstrating direct relevance to childhood cancer patients. Xenografting of cisplatin-exposed human foetal testicular tissue demonstrated that germ cell loss (− 42%, p < 0.01) persisted at 12 weeks. Comparison between exposures to human-relevant concentrations of cisplatin and carboplatin revealed a very similar degree of germ cell loss at 240 h post-exposure. Conclusions This is the first demonstration of direct effects of chemotherapy exposure on germ cell populations in human foetal and prepubertal testis, demonstrating platinum-induced loss of all germ cell populations, and similar effects of cisplatin or carboplatin. Furthermore, these experimental approaches can be used to determine the effects of established and novel cancer therapies on the developing testis that will inform fertility counselling and development of strategies to preserve fertility in children with cancer.


2000 ◽  
Vol 85 (5) ◽  
pp. 2057-2067 ◽  
Author(s):  
Virve Pentikäinen ◽  
Krista Erkkilä ◽  
Laura Suomalainen ◽  
Martti Parvinen ◽  
Leo Dunkel

Abstract The necessity of estrogens for male fertility was recently discovered in studies on both estrogen receptor α knockout and aromatase (cyp 19 gene) knockout mice. However, direct testicular effects of estrogens in male reproduction have remained unclear. Here we studied the protein expression of ERα and the recently described estrogen receptor β in the human seminiferous epithelium and evaluated the role of 17β-estradiol, the main physiological estrogen, in male germ cell survival. Interestingly, both estrogen receptors α and β were found in early meiotic spermatocytes and elongating spermatids of the human testis. Furthermore, low concentrations of 17β-estradiol (10−9 and 10−10 mol/L) effectively inhibited male germ cell apoptosis, which was induced in vitro by incubating segments of human seminiferous tubules without survival factors (i.e. serum and hormones). Dihydrotestosterone, which, in addition to estradiol, is an end metabolite of testosterone, was also capable of inhibiting testicular apoptosis, but at a far higher concentration (10−7 mol/L) than estradiol. Thus, estradiol appears to be a potent germ cell survival factor in the human testis. The novel findings of the present study together with the previously reported indirect effects of estrogens on male germ cells indicate the importance of estrogens for the normal function of the testis.


2020 ◽  
Vol 2 (3) ◽  
pp. 230-234
Author(s):  
Nikolaos Chrysanthakopoulos ◽  

A severe pandemic of CoronaVirus disease 2019 (COVID-19), according to World Health Organization (WHO), appeared in China in December 2019, and spread rapidly. The majority of the patients had mild symptoms and good prognosis after recovery; however some patients developed severe inflammatory reaction and passed away from multiple organ complications. The novel coronavirus, Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) is a beta-coronavirus and is similar with the Severe Acute Respiratory Syndrome Corona Virus 1 (SARS-CoV-1) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). SARS-CoV-2 and -1 have the same host receptor, the angiotensin-converting enzyme 2 (ACE2). The pathogenesis of SARS-CoV-2 infection in humans remains unclear. The immune response is essential to control and reduce SARS-CoV-1 and -2 infections, however, irregular and exaggerated immune responses may lead to the immunopathology of the disease and the lung lesions. This article presents the immunological features of SARS-CoV-2 infection and its potential pathogenesis based on the recent observations of the International literature.


2020 ◽  
Vol 1 (1) ◽  
pp. 22-26
Author(s):  
Cennikon Pakpahan ◽  
Agustinus Agustinus ◽  
Aucky Hinting

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus with a high virulence which cause SARS-CoV-2, a disease with potentially dangerous implications for human health and pandemic. The involvement of other organs in the spread of this virus is still being debated. Considering the presence of (Angiotensin Converting Enzyme-2 (ACE-2) and Transmembrane Serine Protease 2 (TMPRSS2) in the reproductive organs including male reproduction,the male reproductive system possiblity for spreading SARS-CoV-2 should be studied. Reviews: Five studies were reveal the presence of SARS-CoV2 in semen. The reported results are inconsistent. Some of these studies also used unclear methods and procedures, which led to bias in the final results. Ongoing studies are needed to confirm the definite findings before specific recommendations can be made for further management. Summary: There is no definite interpretation of whether SARS-CoV-2 spreads through semen, but protection is still needed when it comes into contact with the semen.


Author(s):  
Otmane El Brini

The coronavirus disease 19 (COVID-19) is a viral infection caused by a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is considered as a public health emergency of international concern. The only available way, apparently effective, to control this pandemic is the social distancing. However, other possible aspects of infection control may be mentioned. In this review, we highlight certain peculiarities linked to the nature of the virus and its angiotensin converting enzyme 2 receptor, the host defense and the final clinical manifestation of the infection that could be essential elements in strengthening the effectiveness of COVID-19 pandemic control efforts.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 255
Author(s):  
Wilmer Cuervo ◽  
Lorraine M. Sordillo ◽  
Angel Abuelo

Dairy calves are unable to mount an effective immune response during their first weeks of life, which contributes to increased disease susceptibility during this period. Oxidative stress (OS) diminishes the immune cell capabilities of humans and adult cows, and dairy calves also experience OS during their first month of life. However, the impact that OS may have on neonatal calf immunity remains unexplored. Thus, we aimed to evaluate the impact of OS on newborn calf lymphocyte functions. For this, we conducted two experiments. First, we assessed the association of OS status throughout the first month of age and the circulating concentrations of the cytokines interferon-gamma (IFN-γ) and interleukin (IL) 4, as well as the expression of cytokine-encoding genes IFNG, IL2, IL4, and IL10 in peripheral mononuclear blood cells (PBMCs) of 12 calves. Subsequently, we isolated PBMCs from another 6 neonatal calves to investigate in vitro the effect of OS on immune responses in terms of activation of lymphocytes, cytokine expression, and antibody production following stimulation with phorbol 12-myristate 13-acetate or bovine herpesvirus-1. The results were compared statistically through mixed models. Calves exposed to high OS status in their first month of age showed higher concentrations of IL-4 and expression of IL4 and IL10 and lower concentrations of IFN-γ and expression of IFNG and IL2 than calves exposed to lower OS. In vitro, OS reduced lymphocyte activation, production of antibodies, and protein and gene expression of key cytokines. Collectively, our results demonstrate that OS can compromise some immune responses of newborn calves. Hence, further studies are needed to explore the mechanisms of how OS affects the different lymphocyte subsets and the potential of ameliorating OS in newborn calves as a strategy to augment the functional capacity of calf immune cells, as well as enhance calves’ resistance to infections.


Sign in / Sign up

Export Citation Format

Share Document