scholarly journals XIAP Knockdown in Alcohol-Associated Liver Disease Models Exhibits Divergent in vitro and in vivo Phenotypes Owing to a Potential Zonal Inhibitory Role of SMAC

2021 ◽  
Vol 12 ◽  
Author(s):  
Li He ◽  
Tejasav S. Sehrawat ◽  
Vikas K. Verma ◽  
Amaia Navarro-Corcuera ◽  
Guneet Sidhu ◽  
...  

Alcohol-associated liver disease (ALD) has been recognized as the most common cause of advanced liver disease worldwide, though mechanisms of pathogenesis remain incompletely understood. The X-linked inhibitor of apoptosis (XIAP) protein was originally described as an anti-apoptotic protein that directly binds and inhibits caspases-3, 7, and 9. Here, we investigated the function of XIAP in hepatocytes in vitro using gain and loss-of-function approaches. We noted an XIAP-dependent increase in caspase activation as well as increased inflammatory markers and pro-inflammatory EV release from hepatocytes in vitro. Primary hepatocytes (PMH) from XiapAlb.Cre and XiaploxP mice exhibited higher cell death but surprisingly, lower expression of inflammation markers. Conditioned media from these isolated Xiap deleted PMH further decrease inflammation in bone marrow-derived macrophages. Also, interestingly, when administered an ethanol plus Fas-agonist-Jo2 model and an ethanol plus CCl4 model, these animals failed to develop an exacerbated disease phenotype in vivo. Of note, neither XiapAlb.Cre nor XiapAAV8.Cre mice presented with aggravated liver injury, hepatocyte apoptosis, liver steatosis, or fibrosis. Since therapeutics targeting XIAP are currently in clinical trials and caspase-induced death is very important for development of ALD, we sought to explore the potential basis of this unexpected lack of effect. We utilized scRNA-seq and spatially reconstructed hepatocyte transcriptome data from human liver tissue and observed that XIAP was significantly zonated, along with its endogenous inhibitor second mitochondria-derived activator of caspases (SMAC) in periportal region. This contrasted with pericentral zonation of other IAPs including cIAP1 and Apollon as well as caspases 3, 7, and 9. Thus providing a potential explanation for compensation of the effect of Xiap deletion by other IAPs. In conclusion, our findings implicate a potential zonallydependent role for SMAC that prevented development of a phenotype in XIAP knockout mice in ALD models. Targeting SMAC may also be important in addition to current efforts of targeting XIAP in treatment of ALD.

Author(s):  
Marco Giordano ◽  
Alessandra Decio ◽  
Chiara Battistini ◽  
Micol Baronio ◽  
Fabrizio Bianchi ◽  
...  

Abstract Background Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. Methods The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. Results We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. Conclusions Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.


2018 ◽  
Vol 19 (11) ◽  
pp. 3473 ◽  
Author(s):  
Jenifer Trepiana ◽  
Iñaki Milton-Laskibar ◽  
Saioa Gómez-Zorita ◽  
Itziar Eseberri ◽  
Marcela González ◽  
...  

This review focuses on the role of 5′-activated protein kinase (AMPK) in the effects of resveratrol (RSV) and some RSV derivatives on hepatic steatosis. In vitro studies, performed in different hepatic cell models, have demonstrated that RSV is effective in preventing liver TG accumulation by activating AMPK, due to its phosphorylation. These preventive effects have been confirmed in studies conducted in animal models, such as mice and rats, by administering the phenolic compound at the same time as the diet which induces TG accumulation in liver. The literature also includes studies focused on other type of models, such as animals showing alcohol-induced steatosis or even steatosis induced by administering chemical products. In addition to the preventive effects of RSV on hepatic steatosis, other studies have demonstrated that it can alleviate previously developed liver steatosis, thus its role as a therapeutic tool has been proposed. The implication of AMPK in the delipidating effects of RSV in in vivo models has also been demonstrated.


2020 ◽  
Vol 21 (14) ◽  
pp. 5148
Author(s):  
Rawnaq Esa ◽  
Eliana Steinberg ◽  
Dvir Dror ◽  
Ouri Schwob ◽  
Mehrdad Khajavi ◽  
...  

During the metastasis process, tumor cells invade the blood circulatory system directly from venous capillaries or indirectly via lymphatic vessels. Understanding the relative contribution of each pathway and identifying the molecular targets that affect both processes is critical for reducing cancer spread. Methionine aminopeptidase 2 (MetAp2) is an intracellular enzyme known to modulate angiogenesis. In this study, we investigated the additional role of MetAp2 in lymphangiogenesis. A histological staining of tumors from human breast-cancer donors was performed in order to detect the level and the localization of MetAp2 and lymphatic capillaries. The basal enzymatic level and activity in vascular and lymphatic endothelial cells were compared, followed by loss of function studies determining the role of MetAp2 in lymphangiogenesis in vitro and in vivo. The results from the histological analyses of the tumor tissues revealed a high MetAp2 expression, with detectable sites of co-localization with lymphatic capillaries. We showed slightly reduced levels of the MetAp2 enzyme and MetAp2 mRNA expression and activity in primary lymphatic cells when compared to the vascular endothelial cells. The genetic and biochemical manipulation of MetAp2 confirmed the dual activity of the enzyme in both vascular and lymphatic remodulation in cell function assays and in a zebrafish model. We found that cancer-related lymphangiogenesis is inhibited in murine models following MetAp2 inhibition treatment. Taken together, our study provides an indication that MetAp2 is a significant contributor to lymphangiogenesis and carries a dual role in both vascular and lymphatic capillary formation. Our data suggests that MetAp2 inhibitors can be effectively used as anti-metastatic broad-spectrum drugs.


2007 ◽  
Vol 30 (4) ◽  
pp. 87
Author(s):  
A. E. Lin ◽  
A. Wakeham ◽  
A. You-Ten ◽  
G. Wood ◽  
T. W. Mak

Ubiquitination is a eukaryotic process of selective proteolysis, where a highly conserved ubiquitin protein is selectively added as a chain to the targeted to a protein for degradation. In recent years, the process of ubiquitination has been shown to be a critical mechanism that can affect essential signalling pathways, including apoptosis, cell cycle arrest and induction of the inflammatory response. Thus, alterations in the ubiquitination process can alter signalling pathways pivotal to numerous disease pathologies. This is clearly demonstrated in perturbations of ubiquitination in the NFκB giving rise to cancer and other immunological disease processes. To gain insight into pathways that require regulation by ubiquitination, our lab has directed focus on the highly conserved E3 ligase, Ariadne 2. Ariadne 2 is characterized as a putative RING finger E3 ligase and is part of the family of highly conserved RBR (RING-B-Box-RING) superfamily. The role of Ariadne 2 has been well studied in Drosophila melanogaster, however, little is known of the function of Ariadne 2 in mammalian systems. Therefore, the main objectives of the project are as follows: To determine the biological role of Ariadne 2, the role of Ariadne 2 in development and differentiation, and the consequences of in vivo loss of Ariadne 2 expression. We are currently investigating the role of Ariadne 2 as an E3 ligase and its involvement in the immune response. To date, we have shown that Ariadne 2 is ubiquitously expressed, especially in the brain, heart, spleen and thymus. For in vivo loss of function analysis, mice were generated by homologous recombination to be deficient for Ariadne 2. These deficient mice die prematurely soon after birth, suggesting a critical role for Ariadne 2 in development and survival. We are currently focusing on the role of Ariadne 2 in development and it’s role in immune pathologies, in particular, spontaneous autoimmunity, using both in vitro studies and in vivo models.


2020 ◽  
Author(s):  
Lungwani Muungo

Upregulation of EBAG9 expression has been observed in severalmalignant tumors such as advanced breast and prostate cancers,indicating that EBAG9 may contribute to tumor proliferation. Inthe present study, we assess the role of EBAG9 in bladder cancer.We generated human bladder cancer EJ cells stably expressingFLAG-tagged EBAG9 (EJ-EBAG9) or empty vector (EJ-vector),and investigated whether EBAG9 overexpression modulates cellgrowth and migration in vitro as well as the in vivo tumor formationof EJ transfectants in xenograft models of BALB/c nude mice.EBAG9 overexpression promoted EJ cell migration, while theeffect of EBAG9 to cultured cell growth was rather minimal.Tumorigenic experiments in nude mice showed that the size of EJEBAG9-derived tumors was significantly larger than EJ-vectorderivedtumors. Loss-of-function study for EBAG9 using smallinterfering RNA (siRNA) in xenografts with parental EJ cellsshowed that the intra-tumoral injection of EBAG9 siRNA markedlyreduced the EJ tumor formation compared with controlsiRNA. Furthermore, immunohistochemical study for EBAG9expression was performed in 60 pathological bladder cancer specimens.Intense and diffuse cytoplasmic immunostaining wasobserved in 45% of the bladder cancer cases. Positive EBAG9immunoreactivity was closely correlated with poor prognosis ofthe patients (p 5 0.0001) and it was an independent prognosticpredictor for disease-specific survival in multivariate analysis(p 5 0.003). Our results indicate that EBAG9 would be a crucialregulator of tumor progression and a potential prognostic markerfor bladder cancer.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 394-394
Author(s):  
Lurong Lian ◽  
Yanfeng Wang ◽  
Xinsheng Chen ◽  
Tami Bach ◽  
Laurie Lenox ◽  
...  

Abstract Pleckstrin is a 40 kDa phosphoprotein containing amino- and carboxyl-terminal Pleckstrin Homology (PH) domains separated by a DEP domain. Pleckstrin’s expression is restricted to platelets and leukocytes, and represents approximately 1% of total cellular protein within these cells. Following platelet and leukocyte activation, PKC rapidly phosphorylates pleckstrin inducing it to bind membrane bound phospholipids such as phosphatidylinositol 4,5 bisphosphate (PIP2). Heterologously expressed phosphorylated pleckstrin colocalized with integrins and induces cytoskeletal reorganization. To better define the role of pleckstrin in vivo, we introduced a loss-of-function mutation into the murine pleckstrin gene. Pleckstrin-null mice were present in offspring at a frequency consistent with a Mendelian inheritance pattern. Adult pleckstrin −/− mice had 32% lower platelet counts than their littermates, but exhibited no spontaneous hemorrhage. Given the role of PKC and phospholipid second messengers on cytoskeletal dynamics, and our observations of pleckstrin overexpression in cell lines, we analyzed whether loss of pleckstrin affected cell spreading. Pleckstrin −/− platelets spread extremely poorly upon immobilized fibrinogen, and rarely exhibited broad membrane extensions. Granulocytes from pleckstrin −/− mice also have a spreading defect, as well as impaired ability to generate reactive oxygen species in the response to TNFα. Knockout B-cells, CD4-T-cells, and CD8-T-cells all migrated approximately 30% as efficiently as wild type cells in response to a gradient of SDF-1α in a transwell assay. These data suggest that loss of pleckstrin causes cytoskeletal defects in cells of multiple hematopoietic lineages. Analyzing whether this caused a functional defect, we found that pleckstrin −/− platelets exhibited a 22% dense- and 24% alpha-granule exocytosis defect, and a 35% defect in thrombin-induced calcium entry. In spite of these abnormalities, platelets changed shape and aggregated normally after stimulation with thrombin, ADP, or collagen in vitro. Pleckstrin knockout platelets did have a markedly impaired aggregation response following exposure to the PKC stimulant, PMA. This suggested that pleckstrin is a critical effector for PKC-mediated aggregation, but another pathway is able to compensate for this loss of pleckstrin following agonist stimulation. We reasoned that the alternative pathway might also utilize PIP2-dependent second messengers. Since the phosphorylation of PIP2 by PI3K generates second messengers that also contribute to platelet aggregation, we tested whether PI3K compensated for the loss of pleckstrin. We found that the PI3K inhibitor, LY294002 profoundly impaired the aggregation of pleckstrin knockout platelets in response to stimulation of the thrombin receptor. In contrast, the PI3K inhibitor minimally affected wild type platelets. This demonstrates that second messengers generated by PI3K are able to compensate for loss of pleckstrin. This also demonstrates that thrombin-induced platelet aggregation can be mediated by one of two parallel pathways, one involving PKC and pleckstrin, and the other involving PI3K. Together, our results show that pleckstrin is an essential component of PKC-mediated platelet activation and signals directed to the cytoskeleton.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 833-833
Author(s):  
Sophia Adamia ◽  
Mariateresa Fulciniti ◽  
Herve Avet-Loiseau ◽  
Samir B Amin ◽  
Parantu Shah ◽  
...  

Abstract Abstract 833 A growing body of evidence suggests that the genome of a many organisms, particularly mammals is controlled not only by transcription factors but also by post-transcriptional programs that are modulated by the family of small RNA molecules including microRNAs (miRs). miRs can block mRNA translation and affect mRNA stability. We have evaluated profiles of 384 human miRs in CD138+ cells from 79 patients with multiple myeloma (MM), 11 MM cell lines and 9 healthy donors (HD) using qRT-PCR based microRNA array. This analysis has identified a MM specific miRNA signature that significantly correlates with OS (p=0.05) and EFS (p=0.017) of patients. Based on this signature one group of patients clustered with HD suggesting indolent disease while other with cell lines indicating aggressive disease. We identified significant modulation of expression of 61 microRNAs in MM cells compared to normal plasma cells. Specific miRs with established oncogenic and tumor suppressor functions such as miR-155, miR-585 and Let7-f were significantly dysregulated in MM (p<0.001). Modulation of miRs-155, -585 and Let7 were observed most frequently in the group of patients with poor OS and EFS suggesting their crucial role in MM. However biological role of these miRs have not yet been defined. To further evaluate biological function of these most recurrent miRs in MM, we evaluated role of miR-155, let-7f and mir-585 in MM cell lines by gain- and loss- of function experiments. We used locked nucleic acid (LNA) anti-miR probes for loss of function and pre-miR-155 for gain of function studies using them alone or in combination. Although manipulation of all 3 miRs induced 20-25% change in MM cell proliferation and/or induction of apoptosis, combination of anti-miR-let7f with pre-miR-155, and anti-miR-585 in combination with miR-155 had dramatic effects on MM cell proliferation and over 60% cells undergoing apoptosis. To evaluate the targets of these miRs, we have determined effects of these anti-miRs and pre-miR on global gene and miR expression profile in MM alone and in combinations. This analysis identified modulation of cluster of miRs as well as genes critical for cell growth and survival. Next, we have tested efficacy of these miRs in vivo in murine Xenograft model to evaluate their therapeutic potential. Tumor-bearing mice were treated intraperitoneal for four consecutively days with the LNA anti-miR-585 and Let-7 and pre-miR-155 probes and respective controls alone and in combination. We observed that the single LNA anti-miR-585 and let 7 and pre miR-155 treatment reduced tumor size by 36%, 31% and 155% in animal 7 days after treatment. However, significant tumor size reductions were achieved when animals were treated with combinations; anti-miR-Let 7f plus pre-miR-155 (58 %); LNA anti-miR-Let 7f plus LNA anti-miR-585 (56 %); LNA-anti-miR-585 plus pre-miR-155 (74 %).We did not observe any significant systemic toxicity in the animals. In conclusion our results suggest significant biological role for miR-585, let 7f and miR-155 in myeloma, both in vitro and in vivo; it highlights for the first time a concerted activity of combination of miRs and holds a great promise for developing novel therapeutic approach for myeloma. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 27 (12) ◽  
pp. 4293-4305 ◽  
Author(s):  
Mi-Yoon Chang ◽  
Woong Sun ◽  
Wataru Ochiai ◽  
Kinichi Nakashima ◽  
Soo-Young Kim ◽  
...  

ABSTRACT In the developing mouse brain, the highest Bcl-XL expression is seen at the peak of neurogenesis, whereas the peak of Bax expression coincides with the astrogenic period. While such observations suggest an active role of the Bcl-2 family proteins in the generation of neurons and astrocytes, no definitive demonstration has been provided to date. Using combinations of gain- and loss-of-function assays in vivo and in vitro, we provide evidence for instructive roles of these proteins in neuronal and astrocytic fate specification. Specifically, in Bax knockout mice, astrocyte formation was decreased in the developing cortices. Overexpression of Bcl-XL and Bax in embryonic cortical precursors induced neural and astrocytic differentiation, respectively, while inhibitory RNAs led to the opposite results. Importantly, inhibition of caspase activity, dimerization, or mitochondrial localization of Bcl-XL/Bax proteins indicated that the differentiation effects of Bcl-XL/Bax are separable from their roles in cell survival and apoptosis. Lastly, we describe activation of intracellular signaling pathways and expression of basic helix-loop-helix transcriptional factors specific for the Bcl-2 protein-mediated differentiation.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Shashi Bala ◽  
Gyongyi Szabo

Alcoholic liver disease (ALD) is a major global health problem. Chronic alcohol use results in inflammation and fatty liver, and in some cases, it leads to fibrosis and cirrhosis or hepatocellular carcinoma. Increased proinflammatory cytokines, particularly TNF alpha, play a central role in the pathogenesis of ALD. TNF alpha is tightly regulated at transcriptional and posttranscriptional levels. Recently, microRNAs (miRNAs) have been shown to modulate gene functions. The role of miRNAs in ALD is getting attention, and recent studies suggest that alcohol modulates miRNAs. Recently, we showed that alcohol induces miR-155 expression both in vitro (RAW 264.7 macrophage) and in vivo (Kupffer cells, KCs of alcohol-fed mice). Induction of miR-155 contributed to increased TNF alpha production and to the sensitization of KCs to produce more TNF alpha in response to LPS. In this paper, we summarize the current knowledge of miRNAs in ALD and also report increased expression of miR-155 and miR-132 in the total liver as well as in isolated hepatocytes and KCs of alcohol-fed mice. Our novel finding of the alcohol-induced increase of miRNAs in hepatocytes and KCs after alcohol feeding provides further insight into the evolving knowledge regarding the role of miRNAs in ALD.


Sign in / Sign up

Export Citation Format

Share Document