scholarly journals Fighting Fat With Fat: n-3 Polyunsaturated Fatty Acids and Adipose Deposition in Broiler Chickens

2021 ◽  
Vol 12 ◽  
Author(s):  
Minjeong Kim ◽  
Brynn H. Voy

Modern broiler chickens are incredibly efficient, but they accumulate more adipose tissue than is physiologically necessary due to inadvertent consequences of selection for rapid growth. Accumulation of excess adipose tissue wastes feed in birds raised for market, and it compromises well-being in broiler-breeders. Studies driven by the obesity epidemic in humans demonstrate that the fatty acid profile of the diet influences adipose tissue growth and metabolism in ways that can be manipulated to reduce fat accretion. Omega-3 polyunsaturated fatty acids (n-3 PUFA) can inhibit adipocyte differentiation, induce fatty acid oxidation, and enhance energy expenditure, all of which can counteract the accretion of excess adipose tissue. This mini-review summarizes efforts to counteract the tendency for fat accretion in broilers by enriching the diet in n-3 PUFA.

2005 ◽  
Vol 288 (3) ◽  
pp. E547-E555 ◽  
Author(s):  
Ana Paola Uranga ◽  
James Levine ◽  
Michael Jensen

Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men ( n = 12) and women ( n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 ± 2 vs. 16 ± 2%, P < 0.005) and lower body fat (12 ± 1 vs. 7 ± 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 ± 3 vs. 45 ± 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 ± 2% in the follicular phase of the menstrual cycle and 10 ± 1% in the luteal phase ( P = NS). Variance in meal fatty acid uptake was somewhat ( P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.


2015 ◽  
Vol 31 (4) ◽  
pp. 543-550 ◽  
Author(s):  
T. Popova ◽  
J. Nakev ◽  
Y. Marchev

The aim of this study was to provide information on the fatty acid profile of different adipose depots - subcutaneous (upper and inner backfat layers) and intramuscular (m. Longissimus dorsi) in East Balkan pigs. The animals were reared in free-range conditions and slaughtered at an average live weight of 107?1.65kg. The results of the study showed that the various adipose tissues in pigs have different lipid metabolism and hence differ in their fatty acid composition. Intramuscular fat had significantly higher content of the saturated C16:0 and C18:0 (P<0.001), as well as the C16:1 (P<0.001) than the subcutaneous fat. In regards to the content of the polyunsaturated fatty acids, the latter displayed considerably higher content of both C18:2 and C18:3 (P<0.001) in comparison to the intramuscular fat in m. Longissimus dorsi. The differences between the subcutaneous and intramuscular adipose tissue in the individual fatty acids determined the similar trend of change in the total content of saturated and polyunsaturated fatty acids. Significant differences between the backfat layers were detected for C16:1, C18:0 and C18:3 (P<0.001). Stearic acid (C18:0) displayed higher content of the inner, while both C16:1 and C18:3 had higher proportion in the outer backfat layer in the East Balkan pigs. Except for C20:2, the long chain polyunsaturated n-6 and n-3 fatty acids had significantly higher proportions in the intramuscular fat, however no differences were determined between the two backfat layers.


2010 ◽  
Vol 59 (6) ◽  
pp. 299-305 ◽  
Author(s):  
Bungo Shirouchi ◽  
Koji Nagao ◽  
Kenta Furuya ◽  
Toshiharu Nagai ◽  
Kenji Ichioka ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
M. García de Acilu ◽  
S. Leal ◽  
B. Caralt ◽  
O. Roca ◽  
J. Sabater ◽  
...  

Acute respiratory distress syndrome (ARDS) is defined as the acute onset of noncardiogenic edema and subsequent gas-exchange impairment due to a severe inflammatory process. Recent report on the prognostic value of eicosanoids in patients with ARDS suggests that modulating the inflammatory response through the use of polyunsaturated fatty acids may be a useful strategy for ARDS treatment. The use of enteral diets enriched with eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) has reported promising results, showing an improvement in respiratory variables and haemodynamics. However, the interpretation of the studies is limited by their heterogeneity and methodology and the effect ofω-3 fatty acid-enriched lipid emulsion or enteral diets on patients with ARDS remains unclear. Therefore, the routine use ofω-3 fatty acid-enriched nutrition cannot be recommended and further large, homogeneous, and high-quality clinical trials need to be conducted to clarify the effectiveness ofω-3 polyunsaturated fatty acids.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1681
Author(s):  
Xiaojing Dong ◽  
Jianqiao Wang ◽  
Peng Ji ◽  
Longsheng Sun ◽  
Shuyan Miao ◽  
...  

The fatty acid compositions of the fish muscle and liver are substantially affected by rearing environment. However, the mechanisms underlying this effect have not been thoroughly described. In this study, we investigated the effects of different culture patterns, i.e., marine cage culture and freshwater pond culture, on long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis in an aquaculturally important fish, the Japanese sea bass (Lateolabrax japonicus). Fish were obtained from two commercial farms in the Guangdong province, one of which raises Japanese sea bass in freshwater, while the other cultures sea bass in marine cages. Fish were fed the same commercial diet. We found that omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) levels in the livers and muscles of the marine cage cultured fish were significantly higher than those in the livers and muscles of the freshwater pond cultured fish. Quantitative real-time PCRs indicated that fatty acid desaturase 2 (FADS2) transcript abundance was significantly lower in the livers of the marine cage reared fish as compared to the freshwater pond reared fish, but that fatty acid elongase 5 (Elovl5) transcript abundance was significantly higher. Consistent with this, two of the 28 CpG loci in the FADS2 promoter region were heavily methylated in the marine cage cultured fish, but were only slightly methylated in freshwater pond cultured fish (n = 5 per group). Although the Elovl5 promoter was less methylated in the marine cage reared fish as compared to the freshwater pond reared fish, this difference was not significant. Thus, our results might indicate that Elovl5, not FADS2, plays an important role in the enhancing LC-PUFA synthesis in marine cage cultures.


2011 ◽  
Vol 59 (6) ◽  
pp. 369 ◽  
Author(s):  
A. J. Hulbert ◽  
Sarah K. Abbott

There are four types of fatty acids but only two types are essential nutritional requirements for many animals. These are the omega-6 polyunsaturated fatty acids (n-6 PUFA) and the omega-3 polyunsaturated fatty acids (n-3 PUFA) and because they cannot be converted to one another they are separate essential dietary requirements. They are only required in small amounts in the diet and their biological importance stems largely from their role as constituents of membrane lipids. They are synthesised by plants and, as a generalisation, green leaves are the source of n-3 PUFA while seeds are the source of n-6 PUFA in the food chain. While the fatty acid composition of storage fats (triglycerides) is strongly influenced by dietary fatty acid composition, this is not the case for membrane fats. The fatty acid composition of membrane lipids is relatively unresponsive to dietary fatty acid composition, although n-3 PUFA and n-6 PUFA can substitute for each in membrane lipids to some extent. Membrane fatty acid composition appears to be regulated and specific for different species. The role of essential fats in the diet of animals on (1) basal metabolic rate, (2) thermoregulation, (3) maximum longevity, and (4) exercise performance is discussed.


2009 ◽  
Vol 2009 ◽  
pp. 230-230
Author(s):  
S A Mirghelenj ◽  
A Golian ◽  
V Taghizadeh

N-3 fatty acids are essential for normal growth and development, and may play an important role in prevention of coronary artery disease, hypertension, diabetes, arthritis, other inflammatory and autoimmune disorders and cancer in humans (Simopoulos, 1999). Fatty acid profiles of broiler meat may be modified by adding fish oils to the diet (Lopez-Ferrer et al., 2001). When meat is enriched with PUFA, particularly n-3 long-chain fatty acids (C≥20), all sources of added vegetable oils seem to be less effective than marine oils (Bou. R et al., 2004). The purpose of this experiment was to study the effect of dietary fish oil on fatty acid composition of thigh and breast meat in broiler chickens.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 438 ◽  
Author(s):  
Cecilia Colson ◽  
Rayane Ghandour ◽  
Océane Dufies ◽  
Samah Rekima ◽  
Agnès Loubat ◽  
...  

Oxylipins are metabolized from dietary ω3 and ω6 polyunsaturated fatty acids and are involved in an inflammatory response. Adipose tissue inflammatory background is a key factor of metabolic disorders and it is accepted that dietary fatty acids, in terms of quality and quantity, modulate oxylipin synthesis in this tissue. Moreover, it has been reported that diet supplementation in ω3 polyunsaturated fatty acids resolves some inflammatory situations. Thus, it is crucial to assess the influence of dietary polyunsaturated fatty acids on oxylipin synthesis and their impact on adipose tissue inflammation. To this end, mice fed an ω6- or ω3-enriched standard diet (ω6/ω3 ratio of 30 and 3.75, respectively) were analyzed for inflammatory phenotype and adipose tissue oxylipin content. Diet enrichment with an ω3 polyunsaturated fatty acid induced an increase in the oxylipins derived from ω6 linoleic acid, ω3 eicosapentaenoic, and ω3 docosahexaenoic acids in brown and white adipose tissues. Among these, the level of pro-resolving mediator intermediates, as well as anti-inflammatory metabolites, were augmented. Concomitantly, expressions of M2 macrophage markers were increased without affecting inflammatory cytokine contents. In vitro, these metabolites did not activate macrophages but participated in macrophage polarization by inflammatory stimuli. In conclusion, we demonstrated that an ω3-enriched diet, in non-obesogenic non-inflammatory conditions, induced synthesis of oxylipins which were involved in an anti-inflammatory response as well as enhancement of the M2 macrophage molecular signature, without affecting inflammatory cytokine secretion.


Sign in / Sign up

Export Citation Format

Share Document