scholarly journals Remarkable Sensitivity of Young Honey Bee Workers to Multiple Non-photic, Non-thermal, Forager Cues That Synchronize Their Daily Activity Rhythms

2021 ◽  
Vol 12 ◽  
Author(s):  
Oliver Siehler ◽  
Shuo Wang ◽  
Guy Bloch

Honey bees live in colonies containing tens of thousands of workers that coordinate their activities to produce efficient colony-level behavior. In free-foraging colonies, nest bees are entrained to the forager daily phase of activity even when experiencing conflicting light-dark illumination regime, but little is known on the cues mediating this potent social synchronization. We monitored locomotor activity in an array of individually caged bees in which we manipulated the contact with neighbour bees. We used circular statistics and coupling function analyses to estimate the degree of social synchronization. We found that young bees in cages connected to cages housing foragers showed stronger rhythms, better synchronization with each other, higher coupling strength, and a phase more similar to that of the foragers compared to similar bees in unconnected cages. These findings suggest that close distance contacts are sufficient for social synchronization or that cage connection facilitated the propagation of time-giving social cues. Coupling strength was higher for bees placed on the same tray compared with bees at a similar distance but on a different tray, consistent with the hypothesis that substrate borne vibrations mediate phase synchronization. Additional manipulation of the contact between cages showed that social synchronization is better among bees in cages connected with tube with a single mesh partition compared to sealed tubes consistent with the notion that volatile cues act additively to substrate borne vibrations. These findings are consistent with self-organization models for social synchronization of activity rhythms and suggest that the circadian system of honey bees evolved remarkable sensitivity to non-photic, non-thermal, time giving entraining cues enabling them to tightly coordinate their behavior in the dark and constant physical environment of their nests.

2007 ◽  
Vol 17 (07) ◽  
pp. 2517-2530 ◽  
Author(s):  
OLEKSANDR V. POPOVYCH ◽  
VALERII KRACHKOVSKYI ◽  
PETER A. TASS

We present a detailed bifurcation analysis of desynchronization transitions in a system of two coupled phase oscillators with delay. The coupling between the oscillators combines a delayed self-feedback of each oscillator with an instantaneous mutual interaction. The delayed self-feedback leads to a rich variety of dynamical regimes, ranging from phase-locked and periodically modulated synchronized states to chaotic phase synchronization and desynchronization. We show that an increase of the coupling strength between oscillators may lead to a loss of synchronization. Intriguingly, the delay has a twofold influence on the oscillations: synchronizing for small and intermediate coupling strength and desynchronizing if the coupling strength exceeds a certain threshold value. We show that the desynchronization transition has the form of a crisis bifurcation of a chaotic attractor of chaotic phase synchronization. This study contributes to a better understanding of the impact of time delay on interacting oscillators.


Author(s):  
H.F. Abou-Shaara

Beekeepers usually supply their colonies with alternatives to nectar (i.e. sugar feeding) during dearth periods of the year, especially cold times of winter. The objective of the study was to determine the best substances to feed bees to enhance the tolerance and survival of honey bees (<em>Apis</em> <em>mellifera</em> L.) to low temperatures. Seven feeding choices were compared under laboratory conditions. These feeding choices were: sugar syrup, liquid honey, creamed honey, honey candy, sugar candy, honey jelly, and honey/sugarcane juice jelly. The results showed that the number of bees attracted to each feeding choice was influenced significantly by feeding type. Worker bees were attracted to all feeding choices and showed a high preference to creamed honey, honey jelly or honey/juice jelly. The tolerance of honey bees to low temperature was enhanced when bees were fed on creamed honey, sugar syrup or honey candy. The mean time at which 50% of bees were able to survive ranged from 3 days (unfed bees) to 15.8 days (honey candy group). The survival rate of worker bees was highest when they fed on honey candy, creamed honey or sugar candy. In light of this study, creamed honey or honey candy can be considered the best feeding choices for bee colonies during winter to enhance their survival and tolerance to low temperatures.


Apidologie ◽  
2021 ◽  
Author(s):  
Sylwia Łopuch ◽  
Adam Tofilski

AbstractVibro-acoustic communication is used by honey bees in many different social contexts. Our previous research showed that workers interact with their queen outside of the swarming period by means of wing-beating behaviour. Therefore, the aim of this study was to verify the hypothesis that the wing-beating behaviour of workers attending the queen stimulates her to lay eggs. The behaviour of workers and the queen was recorded using a high-speed camera, at first in the presence of uncapped brood in the nest and then without one. None of the queens performed wing-beating behaviour. On the other hand, the workers attending the queen demonstrated this behaviour two times per minute, on average, even in the presence of uncapped brood in the nest. After removing the combs with the uncapped brood, the incidence of wing-beating behaviour increased significantly to an average of four times per minute. Wing-beating behaviour did not differ significantly in its characteristics when uncapped brood was present or absent in the nest. During 3 days after removing the combs with the uncapped brood, there was no significant increase in the rate of egg lying by the queen. Therefore, the results presented here do not convincingly confirm that the wing-beating behaviour of workers affects the rate of queen's egg-lying. This negative result can be related to colony disturbance and longer time required by the queen to increase egg production.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1045
Author(s):  
Marian Hýbl ◽  
Andrea Bohatá ◽  
Iva Rádsetoulalová ◽  
Marek Kopecký ◽  
Irena Hoštičková ◽  
...  

Essential oils and their components are generally known for their acaricidal effects and are used as an alternative to control the population of the Varroa destructor instead of synthetic acaricides. However, for many essential oils, the exact acaricidal effect against Varroa mites, as well as the effect against honey bees, is not known. In this study, 30 different essential oils were screened by using a glass-vial residual bioassay. Essential oils showing varroacidal efficacy > 70% were tested by the complete exposure assay. A total of five bees and five mites were placed in the Petri dishes in five replications for each concentration of essential oil. Mite and bee mortality rates were assessed after 4, 24, 48, and 72 h. The LC50 values and selectivity ratio (SR) were calculated. For essential oils with the best selectivity ratio, their main components were detected and quantified by GC-MS/MS. The results suggest that the most suitable oils are peppermint and manuka (SR > 9), followed by oregano, litsea (SR > 5), carrot, and cinnamon (SR > 4). Additionally, these oils showed a trend of the increased value of selective ratio over time. All these oils seem to be better than thymol (SR < 3.2), which is commonly used in beekeeping practice. However, the possible use of these essential oils has yet to be verified in beekeeping practice.


Apidologie ◽  
2019 ◽  
Vol 50 (6) ◽  
pp. 871-880 ◽  
Author(s):  
Jorgiane B. Parish ◽  
Eileen S. Scott ◽  
Raymond Correll ◽  
Katja Hogendoorn

AbstractHoney bees, Apis mellifera, have been implicated as vectors of plant pathogens. However, the survival of spores of plant pathogenic fungi through the digestive tract of workers has not been investigated. As workers defecate outside the hive, transport of hives could give rise to biosecurity concerns if fungal spores remain viable following passage through the digestive tract. To determine the likelihood that honey bees serve as vectors, this study investigated the viability of spores of Botrytis cinerea and Colletotrichum acutatum after passing through the digestive tract of summer and autumn worker bees. For both fungi, the mean viability of spores in faeces suspensions was less than one percent of the initial dose fed to the bees. Although survival was low, the large number of workers per hive implies a high probability of transmission of viable spores through honey bee faeces. Hence, in the case of economically important fungal diseases, transported hives could be a source of inoculum and quarantine restrictions should be considered.


2009 ◽  
Vol 23 (30) ◽  
pp. 5715-5726
Author(s):  
YONG LIU

Phase synchronization between linearly and nonlinearly coupled systems with internal resonance is investigated in this paper. By introducing the conception of phase for a chaotic motion, it demonstrates that the detuning parameter σ between the two natural frequencies ω1and ω2affects phase dynamics, and with the increase in the linear coupling strength, the effect of phase synchronization between two sub-systems was enhanced, while increased firstly, and then decayed as nonlinear coupling strength increases. Further investigation reveals that the transition of phase states between the two oscillators are related to the critical changes of the Lyapunov exponents, which can also be explained by the diffuse clouds.


2001 ◽  
Vol 11 (06) ◽  
pp. 1723-1735 ◽  
Author(s):  
GUO-QUN ZHONG ◽  
KIM-FUNG MAN ◽  
KING-TIM KO

In this paper a variety of uncertainty phenomena in chaos synchronization, which are caused by the sensitive dependence on initial conditions and coupling strength, are numerically investigated. Two identical Chua's circuits are considered for both mutually- and unidirectionally-coupled systems. It is found that initial states of the system play an important role in chaos synchronization. Depending on initial conditions, distinct behaviors, such as in-phase synchronization, anti-phase synchronization, oscillation-quenching, and bubbling of attractors, may occur. Based on the findings, we clarify that the systems, which satisfy the standard synchronization criterion, do not necessarily operate in a synchronization regime.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1257 ◽  
Author(s):  
Shi Chen ◽  
Hong Zhou ◽  
Jingang Lai ◽  
Yiwei Zhou ◽  
Chang Yu

The ideal distributed network composed of distributed generations (DGs) has unweighted and undirected interactions which omit the impact of the power grid structure and actual demand. Apparently, the coupling relationship between DGs, which is determined by line impedance, node voltage, and droop coefficient, is generally non-homogeneous. Motivated by this, this paper investigates the phase synchronization of an islanded network with large-scale DGs in a non-homogeneous condition. Furthermore, we explicitly deduce the critical coupling strength formula for different weighting cases via the synchronization condition. On this basis, three cases of Gaussian distribution, power-law distribution, and frequency-weighted distribution are analyzed. A synthetical analysis is also presented, which helps to identify the order parameter. Finally, this paper employs the numerical simulation methods to test the effectiveness of the critical coupling strength formula and the superiority over the power-law distribution.


2019 ◽  
Vol 56 (4) ◽  
pp. 636-641 ◽  
Author(s):  
Roman V. Koziy ◽  
Sarah C. Wood ◽  
Ivanna V. Kozii ◽  
Claire Janse van Rensburg ◽  
Igor Moshynskyy ◽  
...  

Deformed wing virus (DWV) is a single-stranded RNA virus of honey bees ( Apis mellifera L.) transmitted by the parasitic mite Varroa destructor. Although DWV represents a major threat to honey bee health worldwide, the pathological basis of DWV infection is not well documented. The objective of this study was to investigate clinicopathological and histological aspects of natural DWV infection in honey bee workers. Emergence of worker honey bees was observed in 5 colonies that were clinically affected with DWV and the newly emerged bees were collected for histopathology. DWV-affected bees were 2 times slower to emerge and had 30% higher mortality compared to clinically normal bees. Hypopharyngeal glands in bees with DWV were hypoplastic, with fewer intracytoplasmic secretory vesicles; cells affected by apoptosis were observed more frequently. Mandibular glands were hypoplastic and were lined by cuboidal epithelium in severely affected bees compared to tall columnar epithelium in nonaffected bees. The DWV load was on average 1.7 × 106 times higher ( P < .001) in the severely affected workers compared to aged-matched sister honey bee workers that were not affected by deformed wing disease based on gross examination. Thus, DWV infection is associated with prolonged emergence, increased mortality during emergence, and hypoplasia of hypopharyngeal and mandibular glands in newly emerged worker honey bees in addition to previously reported deformed wing abnormalities.


2000 ◽  
Vol 10 (11) ◽  
pp. 2533-2539 ◽  
Author(s):  
D. PAZÓ ◽  
I. P. MARIÑO ◽  
V. PÉREZ-VILLAR ◽  
V. PÉREZ-MUÑUZURI

Phase synchronization is shown to occur between opposite cells of a ring consisting of chaotic Lorenz oscillators coupled unidirectionally through driving. As the coupling strength is diminished, full phase synchronization cannot be achieved due to random generation of phase jumps. The Brownian dynamics underlying this process is studied in terms of a stochastic diffusion model of a particle in a one-dimensional medium.


Sign in / Sign up

Export Citation Format

Share Document