scholarly journals Transcriptomic and Metabolomic Analyses Provide Insights Into an Aberrant Tissue of Tea Plant (Camellia sinensis)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ding-Ding Liu ◽  
Jun-Ya Wang ◽  
Rong-Jin Tang ◽  
Jie-Dan Chen ◽  
Zhen Liu ◽  
...  

Tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most important economic crops with multiple mutants. Recently, we found a special tea germplasm that has an aberrant tissue on its branches. To figure out whether this aberrant tissue is associated with floral bud (FB) or dormant bud (DB), we performed tissue section, transcriptome sequencing, and metabolomic analysis of these tissues. Longitudinal sections indicated the aberrant tissue internal structure was more like a special bud (SB), but was similar to that of DB. Transcriptome data analysis showed that the number of heterozygous and homozygous SNPs was significantly different in the aberrant tissue compared with FB and DB. Further, by aligning the unmapped sequences of the aberrant tissue to the Non-Redundant Protein Sequences (NR) database, we observed that 36.13% of unmapped sequences were insect sequences, which suggested that the aberrant tissue might be a variation of dormant bud tissue influenced by the interaction of tea plants and insects or pathogens. Metabolomic analysis showed that the differentially expressed metabolites (DEMs) between the aberrant tissue and DB were significantly enriched in the metabolic pathways of biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Subsequently, we analyzed the differentially expressed genes (DEGs) in the above mentioned two tissues, and the results indicated that photosynthetic capacity in the aberrant tissue was reduced, whereas the ethylene, salicylic acid and jasmonic acid signaling pathways were activated. We speculated that exogenous infection induced programmed cell death (PCD) and increased the lignin content in dormant buds of tea plants, leading to the formation of this aberrant tissue. This study advanced our understanding of the interaction between plants and insects or pathogens, providing important clues about biotic stress factors and key genes that lead to mutations and formation of the aberrant tissue.

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1218
Author(s):  
Xinwan Zhang ◽  
Hongling Liu ◽  
Elizabeth Pilon-Smits ◽  
Wei Huang ◽  
Pu Wang ◽  
...  

The vigor of tea plants (Camellia sinensis) and tea quality are strongly influenced by the abundance and forms of nitrogen, principally NO3−, NH4+, and amino acids. Mechanisms to access different nitrogen sources and the regulatory cues remain largely elusive in tea plants. A transcriptome analysis was performed to categorize differentially expressed genes (DEGs) in roots and young leaves during the early response to four nitrogen treatments. Relative to the continuously nitrogen-replete control, the three nitrogen-deprived and resupplied treatments shared 237 DEGs in the shoots and 21 DEGs in the root. Gene-ontology characterization revealed that transcripts encoding genes predicted to participate in nitrogen uptake, assimilation, and translocation were among the most differentially expressed after exposure to the different nitrogen regimes. Because of its high transcript level regardless of nitrogen condition, a putative amino acid transporter, TEA020444/CsCAT9.1, was further characterized in Arabidopsis and found to mediate the acquisition of a broad spectrum of amino acids, suggesting a role in amino acid uptake, transport, and deposition in sinks as an internal reservoir. Our results enhance our understanding of nitrogen-regulated transcript level patterns in tea plants and pinpoint candidate genes that function in nitrogen transport and metabolism, allowing tea plants to adjust to variable nitrogen environments.


2018 ◽  
Vol 19 (12) ◽  
pp. 3938 ◽  
Author(s):  
Chi-Hui Sun ◽  
Chin-Ying Yang ◽  
Jason Tzen

Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 651-655 ◽  
Author(s):  
Liping Zhang ◽  
Chen Shen ◽  
Jipeng Wei ◽  
Wenyan Han

6-Benzyladenine (6-BA) is a safe and efficient cytokinin. The adult tea plants of the cv. Longjing 43 were used in this study. The foliar portion of tea bushes were sprayed with different concentrations (50, 100, 200, or 400 mg·L−1) of 6-BA after heavy pruning, when three to four leaves grew out in late May. The effects of 6-BA application on the growth of the new shoots and lateral branches were quantified. After 5 months, treatments with 50, 100, 200, or 400 mg·L−1 6-BA suppressed plant height by 11.0%, 18.0%, 21.0%, or 22.0%, respectively; 6-BA at 100, 200, or 400 mg·L−1 decreased the number of lateral branches by 20.0%, 23.0%, or 18.0%, respectively. Meanwhile, treatments with 50, 200, or 400 mg·L−1 6-BA increased the length of lateral branches by 38.0%, 79.0%, or 81.0% respectively; 200 mg·L−1 6-BA increased the diameter of lateral branches by 8.0%. In addition, after 2 months, 50 or 200 mg·L−1 6-BA did not significantly affect the growth of functional leaves, 50, 100, or 200 mg·L−1 6-BA did not significantly affect photosynthetic rate (Pn) as compared with the control. Furthermore, 200 or 400 mg·L−1 6-BA significantly increased spring tea yield by 28.9% or 13.3%, respectively as compared with the control. In conclusion, 6-BA at the four concentrations promoted dwarfing and the formation of productive lateral branches and increased the spring yield, and 200 mg·L−1 6-BA exerted the best comprehensive effect.


2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Wei-Wei Deng ◽  
Min Li ◽  
Chen-Chen Gu ◽  
Da-Xiang Li ◽  
Lin-Long Ma ◽  
...  

Caffeine, a purine alkaloid, is a major secondary metabolite in tea leaves. The demand for low caffeine tea is increasing in recent years, especially for health reasons. We report a novel grafted tea material with low caffeine content. The grafted tea plant had Camellia sinensis as scions and C. oleifera as stocks. The content of purine alkaloids was determined in the leaves of one-year-old grafted tea plants by HPLC. We also characterized caffeine synthase (CS), a key enzyme involved in caffeine biosynthesis in tea plants, at the expression level. The expression patterns of CS were examined in grafted and control leaves by Western blot, using a self-prepared polyclonal antibody with high specificity and sensitivity. The expression of related genes ( TCS1, tea caffeine synthase gene, GenBank accession No. AB031280; sAMS, SAM synthetase gene, AJ277206; TIDH, IMP dehydrogenase gene, EU106658) in the caffeine biosynthetic pathway was investigated by qRT-PCR. HPLC showed that the caffeine content was only 38% as compared with the non-grafted tea leaves. Immunoblotting analysis showed that CS protein decreased by half in the leaves of grafted tea plants. qRT-PCR revealed no significant changes in the expression of two genes in the upstream pathway ( sAMS and TIDH), while the expression of TCS1 was greatly decreased (50%). Taken together, these data revealed that the low caffeine content in the grafted tea leaves is due to low TCS1 expression and CS protein accumulation.


2020 ◽  
Vol 21 (16) ◽  
pp. 5684 ◽  
Author(s):  
Xiaochen Zhou ◽  
Lanting Zeng ◽  
Yingjuan Chen ◽  
Xuewen Wang ◽  
Yinyin Liao ◽  
...  

In tea (Camellia sinensis) plants, polyphenols are the representative metabolites and play important roles during their growth. Among tea polyphenols, catechins are extensively studied, while very little attention has been paid to other polyphenols such as gallic acid (GA) that occur in tea leaves with relatively high content. In this study, GA was able to be transformed into methyl gallate (MG), suggesting that GA is not only a precursor of catechins, but also can be transformed into other metabolites in tea plants. GA content in tea leaves was higher than MG content—regardless of the cultivar, plucking month or leaf position. These two metabolites occurred with higher amounts in tender leaves. Using nonaqueous fractionation techniques, it was found that GA and MG were abundantly accumulated in peroxisome. In addition, GA and MG were found to have strong antifungal activity against two main tea plant diseases, Colletotrichum camelliae and Pseudopestalotiopsis camelliae-sinensis. The information will advance our understanding on formation and biologic functions of polyphenols in tea plants and also provide a good reference for studying in vivo occurrence of specialized metabolites in economic plants.


2020 ◽  
Author(s):  
Shunkai Hu ◽  
Mi Zhang ◽  
Yiqing Yang ◽  
Wei Xuan ◽  
Zhongwei Zou ◽  
...  

Abstract Abstract Background Tea plant (Camellia sinensis) is one of the most popular non-alcoholic beverage worldwide. Lateral roots (LRs) of tea plant are the main organ used for tea plant to absorb soil moisture and nutrients. Lateral roots formation and development are tightly regulated by the nitrogen and auxin signaling pathway. In order to understand the function of auxin and nitrogen signaling in LRs formation and development, transcriptome analysis was applied to investigate the differentially expressed genes involved in lateral roots of tea plants treated with indole-3-butyric acid (IBA), N-1-naphthylphthalamic acid (NPA), low and high nitrogen concentration. Results A total of 296 common differentially expressed genes were mainly identified and annotated to four signaling pathways, such as nitrogen metabolism, plant hormone signal transduction, Glutathione metabolism and transcription factors. RNA-sequencing results revealed that majority of differentially expressed genes play important roles in nitrogen metabolism and hormonal signal transduction. Low nitrogen condition induced the biosynthesis of auxin and accumulation of transcripts, thereby regulating lateral roots formation. Furthermore, metabolism of cytokinin and ethylene biosynthesis were also involved in lateral roots development. Transcription factors like MYB genes also contributed to the lateral roots formation of tea plants through secondary cell wall biosynthesis. Reversed phase ultra performance liquid chromatography (RP-UPLC) results showed that the auxin concentration in lateral roots was increased, while the nitrogen level decreased. Thus, tea plant lateral roots formation could be induced by low nitrogen concentration via auxin biosynthesis and accumulation. Conclusion This study provides new insights into the mechanisms associated with nitrogen and auxin signaling pathways to regulate LRs formation and arises new clues for the efficient utilization of nitrogen in tea plant at the genetic level.


Plant Disease ◽  
2020 ◽  
Author(s):  
Yuhe Wan ◽  
Lvjia Zou ◽  
Liang Zeng ◽  
HuaRong Tong ◽  
Yingjuan Chen

Brown blight, as the most damaging and common foliar disease of tea plant [Camellia sinensis (L.) O. Kuntze] in China, has been recently reported to be caused by different species of the genus Colletotrichum. During the years 2016–2017, tea plants in commercial tea cultivation areas of Chongqing city that reported significant incidences of brown blight disease were investigated and then analyzed using both morphological characteristics and multi-locus phylogenetic analysis. The results showed that at least five species of Colletotrichum were identified, including four well known species (C. gloeosporioides, C. camelliae, C. fioriniae, C. karstii) and one novel species (C. chongqingense), indicating that there is remarkable species diversity in Colletotrichum present as pathogens. Results of pathogenicity analyses confirmed that C. chongqingense was the causal agent of brown blight and different isolates were differ in virulence. C. chongqingense, as a novel pathogen, has never been reported as being associated with brown blight disease in tea plants or anthracnose in other host plants anywhere in the world. Knowledge of the Colletotrichum populations will facilitate further studies addressing the relationships between Colletotrichum spp. and their host plant Ca. sinensis.


2021 ◽  
Author(s):  
Liuyuan Shui ◽  
Meilin Yan ◽  
Hui Li ◽  
Pu Wang ◽  
Hua Zhao ◽  
...  

Abstract Tea plant(Camellia sinensis) has very long history of cultivation and abundant germplasm resources in China. Purple bud is a characteristic variety, which has attracted the attention of breeding researchers because it accumulated a large number of anthocyanins naturally. In many species, R2R3-MYBtranscription factors (TFs)wereprovedto be involved in the regulation of anthocyanin biosynthesis.Research on anthocyanin metabolism has been relatively clear in some species, but that needs to be further elucidated in tea plants. In this research, anR2R3-MYB transcriptionfactor CsMYB113 relate to the anthocyanin accumulation regulation was identified from tea plants. Spatial and temporal expressionanalysis revealed differential expression of CsMYB113among different tissues and organs, with highest expression occurringin the roots.Subcellular localization assays showed that CsMYB113 localizedin the nucleus.Ectopic expression of CsMYB113increased pigmentation and anthocyanin contentsby the up-regulationof theexpression levelsof genes in anthocyanin biosynthesis pathwayamongdifferent tissues of Arabidopsis.Moreover, transient overexpressionof 35S::CsMYB113in tea plant increased the anthocyanin contents in the leaves.Our results indicated that CsMYB113 play important role in the anthocyaninbiosynthesis regulation in tea plants. It will also provide useful candidate gene for the modification of anthocyanin metabolism by genetic engineeringin plants.


Sign in / Sign up

Export Citation Format

Share Document