scholarly journals Stomatal Lineage Control by Developmental Program and Environmental Cues

2021 ◽  
Vol 12 ◽  
Author(s):  
Soon-Ki Han ◽  
June M. Kwak ◽  
Xingyun Qi

Stomata are micropores that allow plants to breathe and play a critical role in photosynthesis and nutrient uptake by regulating gas exchange and transpiration. Stomatal development, therefore, is optimized for survival and growth of the plant despite variable environmental conditions. Signaling cascades and transcriptional networks that determine the birth, proliferation, and differentiation of a stomate have been identified. These networks ensure proper stomatal patterning, density, and polarity. Environmental cues also influence stomatal development. In this review, we highlight recent findings regarding the developmental program governing cell fate and dynamics of stomatal lineage cells at the cell state- or single-cell level. We also overview the control of stomatal development by environmental cues as well as developmental plasticity associated with stomatal function and physiology. Recent advances in our understanding of stomatal development will provide a route to improving photosynthesis and water-stress resilience of crop plants in the climate change we currently face.

2020 ◽  
Vol 117 (11) ◽  
pp. 6237-6245 ◽  
Author(s):  
Jiali Zhu ◽  
Ji-Hwan Park ◽  
Seulbee Lee ◽  
Jae Ho Lee ◽  
Daehee Hwang ◽  
...  

Stomata in the plant epidermis play a critical role in growth and survival by controlling gas exchange, transpiration, and immunity to pathogens. Plants modulate stomatal cell fate and patterning through key transcriptional factors and signaling pathways. MicroRNAs (miRNAs) are known to contribute to developmental plasticity in multicellular organisms; however, no miRNAs appear to target the known regulators of stomatal development. It remains unclear as to whether miRNAs are involved in stomatal development. Here, we report highly dynamic, developmentally stage-specific miRNA expression profiles from stomatal lineage cells. We demonstrate that stomatal lineage miRNAs positively and negatively regulate stomatal formation and patterning to avoid clustered stomata. Target prediction of stomatal lineage miRNAs implicates potential cellular processes in stomatal development. We show that miR399-mediatedPHO2regulation, involved in phosphate homeostasis, contributes to the control of stomatal development. Our study demonstrates that miRNAs constitute a critical component in the regulatory mechanisms controlling stomatal development.


2020 ◽  
Author(s):  
Camila B. Lopez-Anido ◽  
Anne Vatén ◽  
Nicole K. Smoot ◽  
Nidhi Sharma ◽  
Victoria Guo ◽  
...  

SUMMARYDynamic cell states underlie flexible developmental programs, such as with the stomatal lineage of the Arabidopsis epidermis. Initial stages of the lineage feature asynchronous and indeterminate divisions modulated by environmental cues, enabling cell fate flexibility to generate the requisite density and pattern of stomata for a given environment. It remains unclear, however, how flexibility of cell fates is controlled. Here, we uncovered distinct models of cell state differentiation within Arabidopsis leaf tissue by leveraging single-cell transcriptomics and molecular genetics. Our findings resolved underlying heterogeneity within cell states of the flexible epidermal stomatal lineage, which appear to exist along a continuum, with progressive cell specification. Beyond the early stages of the lineage, we discovered that the core transcriptional regulator SPEECHLESS is required for cell fate commitment to yield stomatal guard cells. Overall, our work has refined the stomatal lineage paradigm and uncovered progressive cell state decisions along lineage trajectories in developing leaves.


2018 ◽  
Vol 475 (2) ◽  
pp. 441-454 ◽  
Author(s):  
Nicholas Zoulias ◽  
Emily L. Harrison ◽  
Stuart A. Casson ◽  
Julie E. Gray

Plants have evolved developmental plasticity which allows the up- or down-regulation of photosynthetic and water loss capacities as new leaves emerge. This developmental plasticity enables plants to maximise fitness and to survive under differing environments. Stomata play a pivotal role in this adaptive process. These microscopic pores in the epidermis of leaves control gas exchange between the plant and its surrounding environment. Stomatal development involves regulated cell fate decisions that ensure optimal stomatal density and spacing, enabling efficient gas exchange. The cellular patterning process is regulated by a complex signalling pathway involving extracellular ligand–receptor interactions, which, in turn, modulate the activity of three master transcription factors essential for the formation of stomata. Here, we review the current understanding of the biochemical interactions between the epidermal patterning factor ligands and the ERECTA family of leucine-rich repeat receptor kinases. We discuss how this leads to activation of a kinase cascade, regulation of the bHLH transcription factor SPEECHLESS and its relatives, and ultimately alters stomatal production.


2015 ◽  
Vol 210 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Maria J. Gomez-Lamarca ◽  
Laura A. Snowdon ◽  
Ekatarina Seib ◽  
Thomas Klein ◽  
Sarah J. Bray

Notch signaling is a major regulator of cell fate, proliferation, and differentiation. Like other signaling pathways, its activity is strongly influenced by intracellular trafficking. Besides contributing to signal activation and down-regulation, differential fluxes between trafficking routes can cause aberrant Notch pathway activation. Investigating the function of the retromer-associated DNAJ protein Rme-8 in vivo, we demonstrate a critical role in regulating Notch receptor recycling. In the absence of Rme-8, Notch accumulated in enlarged tubulated Rab4-positive endosomes, and as a consequence, signaling was compromised. Strikingly, when the retromer component Vps26 was depleted at the same time, Notch no longer accumulated and instead was ectopically activated. Likewise, depletion of ESCRT-0 components Hrs or Stam in combination with Rme-8 also led to high levels of ectopic Notch activity. Together, these results highlight the importance of Rme-8 in coordinating normal endocytic recycling route and reveal that its absence predisposes toward conditions in which pathological Notch signaling can occur.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuanxiu Sun ◽  
Yu Yuan ◽  
Wei Wu ◽  
Le Lei ◽  
Lingli Zhang

AbstractBone marrow mesenchymal stem cells (BMSCs) refer to a heterogeneous population of cells with the capacity for self-renewal. BMSCs have multi-directional differentiation potential and can differentiate into chondrocytes, osteoblasts, and adipocytes under specific microenvironment or mechanical regulation. The activities of BMSCs are closely related to bone quality. Previous studies have shown that BMSCs and their lineage-differentiated progeny (for example, osteoblasts), and osteocytes are mechanosensitive in bone. Thus, a goal of this review is to discuss how these ubiquious signals arising from mechanical stimulation are perceived by BMSCs and then how the cells respond to them. Studies in recent years reported a significant effect of locomotion on the migration, proliferation and differentiation of BMSCs, thus, contributing to our bone mass. This regulation is realized by the various intersecting signaling pathways including RhoA/Rock, IFG, BMP and Wnt signalling. The mechanoresponse of BMSCs also provides guidance for maintaining bone health by taking appropriate exercises. This review will summarize the regulatory effects of locomotion/mechanical loading on BMSCs activities. Besides, a number of signalling pathways govern MSC fate towards osteogenic or adipocytic differentiation will be discussed. The understanding of mechanoresponse of BMSCs makes the foundation for translational medicine.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 150 ◽  
Author(s):  
Katarzyna Retzer ◽  
Wolfram Weckwerth

Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.


Diabetes ◽  
2010 ◽  
Vol 59 (10) ◽  
pp. 2513-2521 ◽  
Author(s):  
Laure-Emmanuelle Zaragosi ◽  
Brigitte Wdziekonski ◽  
Phi Villageois ◽  
Mayoura Keophiphath ◽  
Marie Maumus ◽  
...  

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Amabel M Orogo ◽  
Dieter A Kubli ◽  
Anne N Murphy ◽  
Åsa B Gustafsson

Activation and participation of cardiac progenitor cells (CPCs) in regeneration are critical for effective repair in the wake of pathologic injury. Stem cell activation and commitment involve increased energy demand and mitochondrial biogenesis. To date, little attention has been paid to the importance of mitochondria in CPC survival, proliferation and differentiation. CPC function is reduced with age but the underlying mechanism is still unclear. Mitochondrial DNA (mtDNA) is more susceptible to oxidative attacks than nuclear DNA due to its proximity to the mitochondrial respiratory chain and lack of protective histone-like proteins. With age, mtDNA accumulates mutations that can impair mitochondrial respiration and increase ROS production. In this study, we examined the effects of accumulating mtDNA mutations on CPC proliferation and survival. We have found that incubation of uncommitted c-kit+ CPCs in differentiation medium increased mitochondrial mass and expansion of the mitochondrial network, which correlated with increased cell size and expression of cardiac lineage commitment markers. Differentiation activated mitochondrial biogenesis, increased mtDNA copy number, and enhanced oxidative capacity and cellular ATP levels in CPCs. To investigate the effect of mtDNA mutations and aging on CPC survival and function, we utilized a mouse model in which a mutation in the mtDNA polymerase γ (POLG m/m ) leads to accumulation of mtDNA mutations, mitochondrial dysfunction, and accelerated aging. Isolated CPCs from hearts of 2-month old POLG m/m mice had reduced proliferation and were more susceptible to oxidative stress and chemotherapeutic agents compared to WT CPCs. The majority of POLG m/m CPCs contained fragmented mitochondria as shown by immunostaining. Incubation in differentiation medium resulted in fewer GATA-4 positive POLG m/m CPCs compared to WT CPCs. The reduced differentiation in these POLG m/m CPCs correlated with reduced PGC-1α expression and OXPHOS protein levels, suggesting that mitochondrial biogenesis is impaired. These data demonstrate that mitochondria play a critical role in CPC function, and accumulation of mtDNA mutations impairs CPC function and reduces their repair potential.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 69-70
Author(s):  
Lautaro Rostoll Cangiano ◽  
Nilusha Malmuthuge ◽  
Tao Ma ◽  
Leluo Guan ◽  
Michael A Steele

Abstract The nutritional management, health and welfare of the dairy calf has historically received less attention due to limited research, and recommendations largely focused on passive transfer of immunity and early weaning strategies. Gastrointestinal diseases and disorders remain the leading cause of mortality and morbidity in dairy calves worldwide. Despite the recent thrust in dairy calf nutrition research, major knowledge gaps still exist regarding how maternal nutrition during pregnancy and postpartum impact gastrointestinal health and function, especially during the fetal and neonatal stages when the developmental plasticity is highest. Recent research has focused on how prepartum nutrition and management can influence colostrum quality and has characterized numerous bioactive proteins, lipids, and carbohydrates that may play a critical role in gastrointestinal function and development. It has also been shown that colostrum plays a fundamental role in promoting colonization with commensal bacteria; however, delaying colostrum feeding or abruptly transitioning calves from colostrum to milk decreased the colonization of beneficial bacteria and impaired gastrointestinal development. With respect to the maternal nutrient supply via milk, it is important to note that calves have been traditionally fed less than half of voluntary intake or fed milk replacer formulations that can largely differ in composition from that of maternal milk. Recent research indicated that common milk replacer formulations may impair gastrointestinal function, highlighting the need to question existing nutritional regimens. In addition, feeding prophylactic antibiotics in milk, as well as waste milk containing antibiotic residues, are common practices in the dairy industry, despite recent studies reporting that these practices can increase calf susceptibility to infections by disrupting gut microbiome and gut function. Although our knowledge how maternal factors impact the gastrointestinal tract of calves is limited, it is clear there are great opportunities to further develop prenatal and postnatal nutritional programs to improve dairy calf gastrointestinal health.


Sign in / Sign up

Export Citation Format

Share Document