scholarly journals Identification of the Complex Interplay Between Nematode-Related lncRNAs and Their Target Genes in Glycine max L.

2021 ◽  
Vol 12 ◽  
Author(s):  
Masoumeh Ahmadi Khoei ◽  
Marzieh Karimi ◽  
Roya Karamian ◽  
Sahand Amini ◽  
Aboozar Soorni

Soybean (Glycine max) is a major plant protein source and oilseed crop. However, plant-parasitic nematodes (PPNs) affect its annual yield. In the current study, in order to better understand the regulation of defense mechanism against PPNs in soybean, we investigated the role of long non-coding RNAs (lncRNAs) in response to two nematode species, Heterodera glycines (SCN: soybean cyst nematode) and Rotylenchulus reniformis (reniform). To this end, two publicly available RNA-seq data sets (SCN data set and RAD: reniform-associated data set) were employed to discover the lncRNAome profile of soybean under SCN and reniform infection, respectively. Upon identification of unannotated transcripts in these data sets, a seven-step pipeline was utilized to sieve these transcripts, which ended up in 384 and 283 potential lncRNAs in SCN data set and RAD, respectively. These transcripts were then used to predict cis and trans nematode-related targets in soybean genome. Computational prediction of target genes function, some of which were also among differentially expressed genes, revealed the involvement of putative nematode-responsive genes as well as enrichment of multiple stress responses in both data sets. Finally, 15 and six lncRNAs were proposed to be involved in microRNA-mediated regulation of gene expression in soybean in response to SNC and reniform infection, respectively. Collectively, this study provides a novel insight into the signaling and regulatory network of soybean-pathogen interactions and opens a new window for further research.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 372 ◽  
Author(s):  
Delasa Aghamirzaie ◽  
Karthik Raja Velmurugan ◽  
Shuchi Wu ◽  
Doaa Altarawy ◽  
Lenwood S. Heath ◽  
...  

Motivation: The increasing availability of chromatin immunoprecipitation sequencing (ChIP-Seq) data enables us to learn more about the action of transcription factors in the regulation of gene expression. Even though in vivo transcriptional regulation often involves the concerted action of more than one transcription factor, the format of each individual ChIP-Seq dataset usually represents the action of a single transcription factor. Therefore, a relational database in which available ChIP-Seq datasets are curated is essential. Results: We present Expresso (database and webserver) as a tool for the collection and integration of available Arabidopsis ChIP-Seq peak data, which in turn can be linked to a user’s gene expression data. Known target genes of transcription factors were identified by motif analysis of publicly available GEO ChIP-Seq data sets. Expresso currently provides three services: 1) Identification of target genes of a given transcription factor; 2) Identification of transcription factors that regulate a gene of interest; 3) Computation of correlation between the gene expression of transcription factors and their target genes. Availability: Expresso is freely available at http://bioinformatics.cs.vt.edu/expresso/


1999 ◽  
Vol 27 (6) ◽  
pp. 575-585 ◽  
Author(s):  
Alf L. Andersson ◽  
Lars Ryhammar

The present study considers possible relations between personality and organizational-assessment variables. Subjects in a stratified sample of 114 university teachers, 36 women and 78 men, were examined using the Defense Mechanism Technique modified (DMTm), a percept-genetic technique. They also made assessments of their university as an organization. Two data sets were formed initially, the one consisting of 18 DMTm variables and the other of these variables together with gender. In total, 34 factor analyses were performed, each involving the inclusion, together with the data set in question, of a different one of the 17 organizational variables which were employed. Affect anxiety (DMTm) was found in factors together with ratings of the organizational variables of openness/diversity, developmental orientation, planning/clarity, workload pressure (negative sign), personal attitude toward the superior, change-centeredness of the superior and organizational climate. Identity anxiety (DMTm) was found in a factor together with organizational climate (negative sign); repression 3 (DMTm) in a factor together with academic values, human orientation and formalization/centralization (negative sign); projected introaggression (DMTm) in a factor together with employee-centeredness of the superior (negative sign); and denial through reversal III (DMTm) in a factor together with structural orientation, formalization/centralization and sufficiency of resources (negative sign). The results were found to be interpretable in terms of the Andersson model of the mind and to support the usefulness of the type of data treatment employed.


2020 ◽  
Vol 21 (3) ◽  
pp. 687
Author(s):  
Marlene Bravo-Parra ◽  
Marina Arenas-Padilla ◽  
Valeria Bárcenas-Preciado ◽  
Jesús Hernández ◽  
Verónica Mata-Haro

MicroRNAs (miRNAs) mediate the regulation of gene expression. Several reports indicate that probiotics induce miRNA-mediated immunomodulation at different levels, such as cytokine production and the up-regulation of several markers related to antigen presentation in antigen-presenting cells. The objective of this work was to identify target genes of miRNAs that are involved in the processing and presentation of antigens in monocyte-derived dendritic cells (moDCs) stimulated with the probiotic Bifidobacterium animalis ssp. lactis BB12 (BB12). First, an in silico prediction analysis for a putative miRNA binding site within a given mRNA target was performed using RNAHybrid software with mature sequences of differentially expressed miRNAs retrieved from a Genbank data set that included BB12-stimulated and unstimulated porcine monocytes. From them, 23 genes resulted in targets of 19 miRNAs, highlighting miR-30b-3p, miR-671-5p, and miR-9858-5p, whose targets were costimulatory molecules, and were overexpressed (p < 0.05) in BB12-stimulated moDCs. The analysis of moDCs showed that the percentage of cells expressing SLA-DR+CD80+ decreased significantly (p = 0.0081) in BB12-stimulated moDCs; interleukin (IL)-10 production was unchanged at 6 h but increased after 24 h of culture in the presence of BB12 (p < 0.001). In summary, our results suggest that SLA-DR and CD80 can be down-regulated by miRNAs miR-30b-3p, miR-671-5p, and miR-9858-5p, while miR-671-5p targets IL-10.


2019 ◽  
Author(s):  
Julia Åkesson ◽  
Zelmina Lubovac-Pilav ◽  
Rasmus Magnusson ◽  
Mika Gustafsson

AbstractSummaryHub transcription factors, regulating many target genes in gene regulatory networks (GRNs), play important roles as disease regulators and potential drug targets. However, while numerous methods have been developed to predict individual regulator-gene interactions from gene expression data, few methods focus on inferring these hubs. We have developed ComHub, a tool to predict hubs in GRNs. ComHub makes a community prediction of hubs by averaging over predictions by a compendium of network inference methods. Benchmarking ComHub to the DREAM5 challenge data and an independent data set of human gene expression, proved a robust performance of ComHub over all data sets. Lastly, we implemented ComHub to work with both predefined networks and to do standard network inference, which we believe will make it generally applicable.AvailabilityCode is available at https://gitlab.com/Gustafsson-lab/[email protected], [email protected]


2018 ◽  
Vol 154 (2) ◽  
pp. 149-155
Author(s):  
Michael Archer

1. Yearly records of worker Vespula germanica (Fabricius) taken in suction traps at Silwood Park (28 years) and at Rothamsted Research (39 years) are examined. 2. Using the autocorrelation function (ACF), a significant negative 1-year lag followed by a lesser non-significant positive 2-year lag was found in all, or parts of, each data set, indicating an underlying population dynamic of a 2-year cycle with a damped waveform. 3. The minimum number of years before the 2-year cycle with damped waveform was shown varied between 17 and 26, or was not found in some data sets. 4. Ecological factors delaying or preventing the occurrence of the 2-year cycle are considered.


2018 ◽  
Vol 21 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Bakhtyar Sepehri ◽  
Nematollah Omidikia ◽  
Mohsen Kompany-Zareh ◽  
Raouf Ghavami

Aims & Scope: In this research, 8 variable selection approaches were used to investigate the effect of variable selection on the predictive power and stability of CoMFA models. Materials & Methods: Three data sets including 36 EPAC antagonists, 79 CD38 inhibitors and 57 ATAD2 bromodomain inhibitors were modelled by CoMFA. First of all, for all three data sets, CoMFA models with all CoMFA descriptors were created then by applying each variable selection method a new CoMFA model was developed so for each data set, 9 CoMFA models were built. Obtained results show noisy and uninformative variables affect CoMFA results. Based on created models, applying 5 variable selection approaches including FFD, SRD-FFD, IVE-PLS, SRD-UVEPLS and SPA-jackknife increases the predictive power and stability of CoMFA models significantly. Result & Conclusion: Among them, SPA-jackknife removes most of the variables while FFD retains most of them. FFD and IVE-PLS are time consuming process while SRD-FFD and SRD-UVE-PLS run need to few seconds. Also applying FFD, SRD-FFD, IVE-PLS, SRD-UVE-PLS protect CoMFA countor maps information for both fields.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2019 ◽  
Vol 73 (8) ◽  
pp. 893-901
Author(s):  
Sinead J. Barton ◽  
Bryan M. Hennelly

Cosmic ray artifacts may be present in all photo-electric readout systems. In spectroscopy, they present as random unidirectional sharp spikes that distort spectra and may have an affect on post-processing, possibly affecting the results of multivariate statistical classification. A number of methods have previously been proposed to remove cosmic ray artifacts from spectra but the goal of removing the artifacts while making no other change to the underlying spectrum is challenging. One of the most successful and commonly applied methods for the removal of comic ray artifacts involves the capture of two sequential spectra that are compared in order to identify spikes. The disadvantage of this approach is that at least two recordings are necessary, which may be problematic for dynamically changing spectra, and which can reduce the signal-to-noise (S/N) ratio when compared with a single recording of equivalent duration due to the inclusion of two instances of read noise. In this paper, a cosmic ray artefact removal algorithm is proposed that works in a similar way to the double acquisition method but requires only a single capture, so long as a data set of similar spectra is available. The method employs normalized covariance in order to identify a similar spectrum in the data set, from which a direct comparison reveals the presence of cosmic ray artifacts, which are then replaced with the corresponding values from the matching spectrum. The advantage of the proposed method over the double acquisition method is investigated in the context of the S/N ratio and is applied to various data sets of Raman spectra recorded from biological cells.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1483
Author(s):  
Ivan Antonov ◽  
Yulia Medvedeva

Although thousands of mammalian long non-coding RNAs (lncRNAs) have been reported in the last decade, their functional annotation remains limited. A wet-lab approach to detect functions of a novel lncRNA usually includes its knockdown followed by RNA sequencing and identification of the deferentially expressed genes. However, identification of the molecular mechanism(s) used by the lncRNA to regulate its targets frequently becomes a challenge. Previously, we developed the ASSA algorithm that detects statistically significant inter-molecular RNA-RNA interactions. Here we designed a workflow that uses ASSA predictions to estimate the ability of an lncRNA to function via direct base pairing with the target transcripts (co- or post-transcriptionally). The workflow was applied to 300+ lncRNA knockdown experiments from the FANTOM6 pilot project producing statistically significant predictions for 71 unique lncRNAs (104 knockdowns). Surprisingly, the majority of these lncRNAs were likely to function co-transcriptionally, i.e., hybridize with the nascent transcripts of the target genes. Moreover, a number of the obtained predictions were supported by independent iMARGI experimental data on co-localization of lncRNA and chromatin. We detected an evolutionarily conserved lncRNA CHASERR (AC013394.2 or LINC01578) that could regulate target genes co-transcriptionally via interaction with a nascent transcript by directing CHD2 helicase. The obtained results suggested that this nuclear lncRNA may be able to activate expression of the target genes in trans by base-pairing with the nascent transcripts and directing the CHD2 helicase to the regulated promoters leading to open the chromatin and active transcription. Our study highlights the possible importance of base-pairing between nuclear lncRNAs and nascent transcripts for the regulation of gene expression.


2013 ◽  
Vol 756-759 ◽  
pp. 3652-3658
Author(s):  
You Li Lu ◽  
Jun Luo

Under the study of Kernel Methods, this paper put forward two improved algorithm which called R-SVM & I-SVDD in order to cope with the imbalanced data sets in closed systems. R-SVM used K-means algorithm clustering space samples while I-SVDD improved the performance of original SVDD by imbalanced sample training. Experiment of two sets of system call data set shows that these two algorithms are more effectively and R-SVM has a lower complexity.


Sign in / Sign up

Export Citation Format

Share Document