scholarly journals Re-examination of the APETALA2/Ethylene-Responsive Factor Gene Family in Barley (Hordeum vulgare L.) Indicates a Role in the Regulation of Starch Synthesis

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinjin Ding ◽  
Hassan Karim ◽  
Yulong Li ◽  
Wendy Harwood ◽  
Carlos Guzmán ◽  
...  

The APETALA2/Ethylene-Responsive factor (AP2/ERF) gene family is a large plant-specific transcription factor family, which plays important roles in regulating plant growth and development. A role in starch synthesis is among the multiple functions of this family of transcription factors. Barley (Hordeum vulgare L.) is one of the most important cereals for starch production. However, there are limited data on the contribution of AP2 transcription factors in barley. In this study, we used the recently published barley genome database (Morex) to identify 185 genes of the HvAP2/ERF family. Compared with previous work, we identified 64 new genes in the HvAP2/ERF gene family and corrected some previously misannotated and duplicated genes. After phylogenetic analysis, HvAP2/ERF genes were classified into four subfamilies and 18 subgroups. Expression profiling showed different patterns of spatial and temporal expression for HvAP2/ERF genes. Most of the 12 HvAP2/ERF genes analyzed using quantitative reverse transcription–polymerase chain reaction had similar expression patterns when compared with those of starch synthase genes in barley, except for HvAP2-18 and HvERF-73. HvAP2-18 is homologous to OsRSR1, which negatively regulates the synthesis of rice starch. Luciferase reporter gene, and yeast one-hybrid assays showed that HvAP2-18 bound the promoter of AGP-S and SBE1 in vitro. Thus, HvAP2-18 might be an interesting candidate gene to further explore the mechanisms involved in the regulation of starch synthesis in barley.

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1935 ◽  
Author(s):  
Man-Man Fu ◽  
Chen Liu ◽  
Feibo Wu

Xyloglucan endotransglucosylase/hydrolases (XTHs)—a family of xyloglucan modifying enzymes—play an essential role in the construction and restructuring of xyloglucan cross-links. However, no comprehensive study has been performed on this gene family in barley. A total of 24 HvXTH genes (named HvXTH1-24) and an EG16 member were identified using the recently completed genomic database of barley (Hordeum vulgare). Phylogenetic analysis showed that 24 HvXTH genes could be classified into three phylogenetic groups: (I/II, III-A and III-B) and HvXTH15 was in the ancestral group. All HvXTH protein members—except HvXTH15—had a conserved N-glycosylation site. The genomic location of HvXTHs on barley chromosomes showed that the 24 genes are unevenly distributed on the 7 chromosomes, with 10 of them specifically located on chromosome 7H. A structure-based sequence alignment demonstrates that each XTH possesses a highly conserved domain (ExDxE) responsible for catalytic activity. Expression profiles based on the barley genome database showed that HvXTH family members display different expression patterns in different tissues and at different stages. This study is the first systematic genomic analysis of the barley HvXTH gene family. Our results provide valuable information that will help to elucidate the roles of HvXTH genes in the growth and development of barley.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128025 ◽  
Author(s):  
Runyararo M. Hove ◽  
Mark Ziemann ◽  
Mrinal Bhave

2021 ◽  
Vol 12 ◽  
Author(s):  
Yongqiang Li ◽  
Shuang An ◽  
Qiangqiang Cheng ◽  
Yu Zong ◽  
Wenrong Chen ◽  
...  

Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTORS (TCP) transcription factors have versatile functions in plant growth, development and response to environmental stress. Despite blueberry’s value as an important fruit crop, the TCP gene family has not been systematically studied in this plant. The current study identified blueberry TCP genes (VcTCPs) using genomic data from the tetraploid blueberry variety ‘Draper’; a total of 62 genes were obtained. Using multiple sequence alignment, conserved motif, and gene structure analyses, family members were divided into two subfamilies, of which class II was further divided into two subclasses, CIN and TB1. Synteny analysis showed that genome-wide or segment-based replication played an important role in the expansion of the blueberry TCP gene family. The expression patterns of VcTCP genes during fruit development, flower bud dormancy release, hormone treatment, and tissue-specific expression were analyzed using RNA-seq and qRT-PCR. The results showed that the TB1 subclass members exhibited a certain level of expression in the shoot, leaf, and bud; these genes were not expressed during fruit development, but transcript levels decreased uniformly during the release of flower bud dormancy by low-temperature accumulation. The further transgenic experiments showed the overexpression of VcTCP18 in Arabidopsis significantly decreased the seed germination rate in contrast to the wild type. The bud dormancy phenomena as late-flowering, fewer rosettes and main branches were also observed in transgenic plants. Overall, this study provides the first insight into the evolution, expression, and function of VcTCP genes, including the discovery that VcTCP18 negatively regulated bud dormancy release in blueberry. The results will deepen our understanding of the function of TCPs in plant growth and development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


2021 ◽  
Vol 12 ◽  
Author(s):  
Farhat Abbas ◽  
Yanguo Ke ◽  
Yiwei Zhou ◽  
Yunyi Yu ◽  
Muhammad Waseem ◽  
...  

The MYB gene family is one of the largest groups of transcription factors (TFs) playing diverse roles in several biological processes. Hedychium coronarium (white ginger lily) is a renowned ornamental plant both in tropical and subtropical regions due to its flower shape and strong floral scent mainly composed of terpenes and benzenoids. However, there is no information available regarding the role of the MYB gene family in H. coronarium. In the current study, the MYB gene family was identified and extensively analyzed. The identified 253 HcMYB genes were unevenly mapped on 17 chromosomes at a different density. Promoter sequence analysis showed numerous phytohormones related to cis-regulatory elements. The majority of HcMYB genes contain two to three introns and motif composition analysis showed their functional conservation. Phylogenetic analysis revealed that HcMYBs could be classified into 15 distinct clades, and the segmental duplication events played an essential role in the expansion of the HcMYB gene family. Tissue-specific expression patterns of HcMYB genes displayed spatial and temporal expression. Furthermore, seven HcMYB (HcMYB7/8/75/79/145/238/248) were selected for further investigation. Through RT-qPCR, the response of candidates HcMYB genes toward jasmonic acid methyl ester (MeJA), abscisic acid (ABA), ethylene, and auxin was examined. Yeast one-hybrid (Y1H) assays revealed that candidate genes directly bind to the promoter of bottom structural volatile synthesis genes (HcTPS1, HcTPS3, HcTPS10, and HcBSMT2). Moreover, yeast two-hybrid (Y2H) assay showed that HcMYB7/8/75/145/248 interact with HcJAZ1 protein. In HcMYB7/8/79/145/248-silenced flowers, the floral volatile contents were decreased and downregulated the expression of key structural genes, suggesting that these genes might play crucial roles in floral scent formation in H. coronarium by regulating the expression of floral scent biosynthesis genes. Collectively, these findings indicate that HcMYB genes might be involved in the regulatory mechanism of terpenoids and benzenoid biosynthesis in H. coronarium.


Sign in / Sign up

Export Citation Format

Share Document