scholarly journals Reproducibility of the Geomagnetically Induced Currents at Middle Latitudes During Space Weather Disturbances

Author(s):  
Takashi Kikuchi ◽  
Yusuke Ebihara ◽  
Kumiko. K. Hashimoto ◽  
Kentaro Kitamura ◽  
Shin-Ichi Watari

Watari et al. (Space Weather, 2009, 7) found that the geomagnetically induced current (GIC) in Hokkaido, Japan (35.7° geomagnetic latitude (GML)), is well correlated with the y-component magnetic field (By) (correlation coefficients >0.8) and poorly correlated with Bx,z and dBx,y,z/dt. The linear correlation with By would help predict the GIC, if we have capabilities of reproducing the magnetosphere–ionosphere currents during space weather disturbances. To validate the linear correlation with By for any periods (T) of disturbances, we made correlation analyses for the geomagnetic sudden commencements and pulsations (T = 1–10 min), quasi-periodic DP2 fluctuations (30 min), substorm positive bays (60 min), geomagnetic storms (1–20 h), and quiet-time diurnal variations (8 h). The linear correlation is found to be valid for short periods (cc > 0.8 for T < 1 h) but not for long periods (cc < 0.3 for T > 6 h). To reproduce the GIC with any periods, we constructed one-layer model with uniform conductor and calculated the electric field (IEF) induced by By using the convolution of dBy/dt and the step response of the conductor. The IEF is found to be correlated with the GIC for long periods (cc > 0.9), while the GIC-By correlation remains better for short periods. To improve the model, we constructed a two-layer model with highly conductive upper and less conductive lower layers. The IEF is shown to reproduce the GIC with cc > 0.9 for periods ranging from 1 min to 24 h. The model is applied to the GIC measured at lower latitudes in Japan (25.3° GML) with strong By dependence. The mechanism of the strong By dependence of the GIC remains an issue, but a possible mechanism for the daytime GIC is due to the zeroth-order transverse magnetic (TM0) mode in the Earth-ionosphere waveguide, by which the ionospheric currents are transmitted from the polar to equatorial ionosphere.

2016 ◽  
Vol 34 (4) ◽  
pp. 427-436 ◽  
Author(s):  
Larisa Trichtchenko

Abstract. Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.


2013 ◽  
Vol 8 (S300) ◽  
pp. 500-501
Author(s):  
Larisa Trichtchenko

AbstractCoronal mass ejections (CME) and associated interplanetary-propagated solar wind disturbances are the established causes of the geomagnetic storms which, in turn, create the most hazardous impacts on power grids. These impacts are due to the large geomagnetically induced currents (GIC) associated with variations of geomagnetic field during storms, which, flowing through the transformer windings, cause extra magnetisation. That can lead to transformer saturation and, in extreme cases, can result in power blackouts. Thus, it is of practical importance to study the solar causes of the large space weather events. This paper presents the example of the space weather chain for the event of 5-6 November 2001 and a table providing complete overview of the largest solar events during solar cycle 23 with their subsequent effects on interplanetary medium and on the ground. This compact overview can be used as guidance for investigations of the solar causes and their predictions, which has a practical importance in everyday life.


2019 ◽  
Vol 115 (1/2) ◽  
Author(s):  
Emmanuel Nahayo ◽  
Pieter B. Kotzé ◽  
Pierre J. Cilliers ◽  
Stefan Lotz

Geomagnetic storms are space weather events that result in a temporary disturbance of the earth’s magnetosphere caused by a solar wind that interacts with the earth’s magnetic field. We examined more closely how some southern African magnetic observatories responded to the Saint Patrick’s Day storm using local K-indices. We show how this network of observatories may be utilised to model induced electric field, which is useful for the monitoring of geomagnetically induced anomalous currents capable of damaging power distribution infrastructure. We show an example of the correlation between a modelled induced electric field and measured geomagnetically induced currents in southern Africa. The data show that there are differences between global and local indices, which vary with the phases of the storm. We show the latitude dependence of geomagnetic activity and demonstrate that the direction of the variation is different for the X and Y components. Significance: • The importance of ground-based data in space weather studies is demonstrated. • We show how SANSA’s geomagnetic network may be utilised to model induced electric field, which is useful for the monitoring of geomagnetically induced anomalous currents capable of damaging power distribution infrastructure.


2021 ◽  
Author(s):  
Larisa Trichtchenko

<p>Geomagnetically induced currents (GIC), increased during space weather events, are able to interfere with pipeline corrosion protections systems and potentially can increase corrosion of the pipeline steel.</p><p>Methods, widely used for the evaluation of annual corrosion rates, are based on exposure of steel to constant currents and voltages (DC), or alternating currents and voltages of a constant frequency (50 Hz or 60 Hz), while GIC are characterised by a continuous frequency spectrum, with the range of frequencies from 10<sup>-5</sup> Hz to 1 Hz.</p><p>This paper introduces the methods for use in the estimation of corrosion rates on pipeline steel produced by GIC (commonly referred to as “telluric currents” in the pipeline industry) and provides results calculated for specific time periods with use of available recordings made on pipelines at the times of geomagnetic storms. As well, annual cumulative corrosion rates are estimated based on the modelling of pipeline currents and voltages.</p><p>In addition to the detailed presentation of the methods utilised, a comparison of corrosion rates produced by telluric variations on non-protected and protected pipelines located in mid- and high-latitudes is presented.</p>


2014 ◽  
Vol 1008-1009 ◽  
pp. 524-529
Author(s):  
Ping Liu ◽  
Chun Ming Liu ◽  
Lian Guang Liu

Large geoelectric field generated in the ground during severe space weather events are sources of geomagnetically induced currents (GICs), which flow in power systems potentially causing damage to system component or failure of the system. In this paper, based on the H and D components of the recent geomagnetic storm data measured at 10 mid-to-low latitude geomagnetic observatories, we analyzed the variation characteristics of the amplitude of north-south and east-west geoelectric components with geographic latitudes. Furthermore, we discussed the possibilities of GIC problem occurrence in transmission lines in different directions at different latitude in China. The result shows that transmission lines in east-west direction at higher latitude are more susceptible to space weather hazard. And it will contribute to the assessment of geomagnetic hazard to power systems and the control of GIC in the current and future power grids in China.


1987 ◽  
Vol 40 (1) ◽  
pp. 73 ◽  
Author(s):  
Wallace H Campbell ◽  
Edward R Schiffmacher

Equivalent ionospheric source currents representing the quiet-day geomagnetic field variations were established for a half-sector. of the Earth that included Australia. The analysis used a spherical harmonic separation of the external and internal fields for the extremely quiet conditions existing in 1965. Month-by-month behaviour of the current system indicated a clockwise vortex source with a maximum of 12.8xl04 A in January and a minimum of 4.4xl04 A in June. The focus location shifted from about -32�5� geomagnetic latitude in summer to about - 30.0� in winter. The separated external and internal field coefficients were used to estimate the Earth's upper mantle electrical conductivity (J" at a depth d from about 250 to 350 km as (J" =0�00067 exp(O� 012 d) S m - I and from about 350 to 550 km as (J" = 0�0014exp(0�0088d) Sm- I .


2021 ◽  
Vol 13 (18) ◽  
pp. 3624
Author(s):  
Janis Balodis ◽  
Madara Normand ◽  
Inese Varna

The main objective of the present study is to perform an analysis of the space weather impact on the Latvian CORS (Continuously Operating GNSS (Global Navigation Satellite System) Stations) GPS (Global Positioning System) observations, in situations of geomagnetic storms, sun flares and extreme TEC (Total Electron Content) and ROTI (Rate of change of TEC index) levels, by analyzing the results, i.e., 90-second kinematic post-processing solutions, obtained using Bernese GNSS Software v5.2. To complete this study, the 90-second kinematic time series of all the Latvian CORS for the period from 2007 to 2017 were analyzed, and a correlation between time series outliers (hereinafter referred to as faults) and extreme space weather events was sought. Over 36 million position determination solutions were examined, 0.6% of the solutions appear to be erroneous, 0.13% of the solutions have errors greater than 1 m, 0.05% have errors greater than 10 m, and 0.01% of the solutions show errors greater than 50 meters. The correlation between faulty results, TEC and ROTI levels and Bernese GNSS Software v5.2 detected cycle slips was computed. This also includes an analysis of fault distribution depending on the geomagnetic latitude as well as faults distribution simultaneously occurring in some stations, etc. This work is the statistical analysis of the Latvian CORS security, mainly focusing on geomagnetic extreme events and ionospheric scintillations in the region of Latvia, with a latitude around 57° N.


2021 ◽  
Author(s):  
Andrew Dimmock ◽  
Lisa Rosenqvist ◽  
Ari Viljanen ◽  
Colin Forsyth ◽  
Mervyn Freeman ◽  
...  

<p>Geomagnetically Induced Currents (GICs) are a space weather hazard that can negatively impact large ground-based infrastructures such as power lines, pipelines, and railways. They are driven by the dynamic spatiotemporal behaviour of currents flowing in geospace, which drive rapid geomagnetic disturbances on the ground. In some cases, geomagnetic disturbances are highly localised and spatially structured due to the dynamical behaviour of geospace currents and magnetosphere-ionosphere (M-I) coupling dynamics, which are complex and often unclear.</p><p>In this work, we investigate and quantify the spatial structure of large geomagnetic depressions exceeding several hundred nT according to the 10 strongest events measured over Fennoscandia by IMAGE. Using ground magnetometer measurements we connect these spatially structured geomagnetic disturbances to possible M-I coupling processes and identify their likely magnetospheric origin. In addition, the ability for these disturbances to drive large GICs is assessed by calculating their respective geoelectric fields in Sweden using the SMAP ground conductivity model. To compliment the observations, we also utilise high resolution runs (>7 million cells) of the Space Weather Modeling Framework (SWMF) to determine to what extent global MHD models can capture this behaviour.</p>


2020 ◽  
Vol 10 ◽  
pp. 5 ◽  
Author(s):  
Neil C. Rogers ◽  
James A. Wild ◽  
Emma F. Eastoe ◽  
Jesper W. Gjerloev ◽  
Alan W. P. Thomson

This paper presents a multi-parameter global statistical model of extreme horizontal geomagnetic field fluctuations (dBH/dt), which are a useful input to models assessing the risk of geomagnetically induced currents in ground infrastructure. Generalised Pareto (GP) distributions were fitted to 1-min measurements of |dBH/dt| from 125 magnetometers (with an average of 28 years of data per site) and return levels (RL) predicted for return periods (RP) between 5 and 500 years. Analytical functions characterise the profiles of maximum-likelihood GP model parameters and the derived RLs as a function of corrected geomagnetic latitude, λ. A sharp peak in both the GP shape parameter and the RLs is observed at |λ| = 53° in both hemispheres, indicating a sharp equatorward limit of the auroral electrojet region. RLs also increase strongly in the dayside region poleward of the polar cusp (|λ| > 75°) for RPs > 100 years. We describe how the GP model may be further refined by modelling the probability of occurrences of |dBH/dt| exceeding the 99.97th percentile as a function of month, magnetic local time, and the direction of the field fluctuation, dBH, and demonstrate that these patterns of occurrence align closely to known patterns of auroral substorm onsets, ULF Pc5 wave activity, and (storm) sudden commencement impacts. Changes in the occurrence probability profiles with the interplanetary magnetic field (IMF) orientation reveal further details of the nature of the ionospheric currents driving extreme |dBH/dt| fluctuations, such as the changing location of the polar cusp and seasonal variations explained by the Russell-McPherron effect.


2018 ◽  
Vol 8 ◽  
pp. A03 ◽  
Author(s):  
Roberta Piccinelli ◽  
Elisabeth Krausmann

Space weather driven by solar activity can induce geomagnetic disturbances at the Earth's surface that can affect power transmission systems. Variations in the geomagnetic field result in geomagnetically induced currents that can enter the system through its grounding connections, saturate transformers and lead to system instability and possibly collapse. This study analyzes the impact of extreme space weather on the northern part of the European power transmission grid for different transformer designs to understand its vulnerability in case of an extreme event. The behavior of the system was analyzed in its operational mode during a severe geomagnetic storm, and mitigation measures, like line compensation, were also considered. These measures change the topology of the system, thus varying the path of geomagnetically induced currents and inducing a local imbalance in the voltage stability superimposed on the grid operational flow. Our analysis shows that the North European power transmission system is fairly robust against extreme space weather events. When considering transformers more vulnerable to geomagnetic storms, only few episodes of instability were found in correspondence with an existing voltage instability due to the underlying system load. The presence of mitigation measures limited the areas of the network in which bus voltage instabilities arise with respect to the system in which mitigation measures are absent.


Sign in / Sign up

Export Citation Format

Share Document