scholarly journals Yuck! Plural Valuation of Constructed Wetland Maintenance for Decentralized Wastewater Treatment in Rural India

2021 ◽  
Vol 4 ◽  
Author(s):  
Claire N. Friedrichsen ◽  
Martha C. Monroe ◽  
Samira H. Daroub ◽  
Suhas P. Wani

In 2012, an estimated 50% of rural households in India had a system of drainage for moving wastewater away from their homes, but 0.0% have access to safe, reuseable, treated wastewater. Constructed wetlands can provide decentralized wastewater treatment for rural villages and lead to multiple benefits, such as reusable water, reduced disease, and decreased environmental pollution. However, the maintenance of decentralized wastewater technologies is poorly understood. We used a case study design across four communities and six constructed wetlands to understand the social and cultural variables impacting the maintenance of constructed wetlands for decentralized wastewater treatment to provide agricultural irrigation water. Semi-structured interviews (n = 39) and focus groups (n = 4) were conducted with people from Telangana and Karnataka, India. Interviewees were classed into four groups: (1) Scientists, (2) Farmers, (3) Privileged Community Members, and (4) Socially Disadvantaged Community members. Inductive, constant comparison qualitative data analysis was used to develop a model for explaining the existing practice of wetland maintenance. Three themes emerged from the data: mental models of constructed wetland maintenance show plural valuation of ecosystem services, yuck as a leverage point for decreasing social cohesion in the community, and recommendations for improving maintenance through human-centered design. Based on the results, we propose a model for understanding how to incorporate the plural valuation of ecosystem services provided by constructed wetlands and human-centered design to support long-term adoption and maintenance of decentralized wastewater treatment technologies.

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2004
Author(s):  
Aakash Dev ◽  
Timo C. Dilly ◽  
Amin E. Bakhshipour ◽  
Ulrich Dittmer ◽  
S. Murty Bhallamudi

A transition from conventional centralized to hybrid decentralized systems has been increasingly advised recently due to their capability to enhance the resilience and sustainability of urban water supply systems. Reusing treated wastewater for non-potable purposes is a promising opportunity toward the aforementioned resolutions. In this study, we present two optimization models for integrating reusing systems into existing sewerage systems to bridge the supply–demand gap in an existing water supply system. In Model-1, the supply–demand gap is bridged by introducing on-site graywater treatment and reuse, and in Model-2, the gap is bridged by decentralized wastewater treatment and reuse. The applicability of the proposed models is evaluated using two test cases: one a proof-of-concept hypothetical network and the other a near realistic network based on the sewerage network in Chennai, India. The results show that the proposed models outperform the existing approaches by achieving more than a 20% reduction in the cost of procuring water and more than a 36% reduction in the demand for freshwater through the implementation of local on-site graywater reuse for both test cases. These numbers are about 12% and 34% respectively for the implementation of decentralized wastewater treatment and reuse.


RSC Advances ◽  
2016 ◽  
Vol 6 (41) ◽  
pp. 34841-34848 ◽  
Author(s):  
Yan Kang ◽  
Jian Zhang ◽  
Huijun Xie ◽  
Zizhang Guo ◽  
Pengfei Li ◽  
...  

An improved constructed wetland (CW) with the addition ofTubifex tubifexin winter was studied in laboratory batch systems. The outcomes of this study indicate that the potential use ofTubifex tubifexcould improve the ecosystem and water purification by CWs in winter.


2010 ◽  
Vol 62 (10) ◽  
pp. 2408-2418 ◽  
Author(s):  
C. Y. Wu ◽  
J. K. Liu ◽  
S. H. Cheng ◽  
D. E. Surampalli ◽  
C. W. Chen ◽  
...  

In Taiwan, more than 20% of the major rivers are mildly to heavily polluted by domestic, industrial, and agricultural wastewaters due to the low percentage of sewers connected to wastewater treatment plants. Thus, constructed or engineered wetlands have been adopted as the major alternatives to clean up polluted rivers. Constructed wetlands are also applied as the tertiary wastewater treatment systems for the wastewater polishment to meet water reuse standards with lower operational costs. The studied Kaoping River Rail Bridge Constructed Wetland (KRRBCW) is the largest constructed wetland in Taiwan. It is a multi-function wetland and is used for polluted creek water purification and secondary wastewater polishment before it is discharged into the Kaoping River. Although constructed wetlands are feasible for contaminated water treatment, wetland sediments are usually the sinks for organics and metals. In this study, water and sediment samples were collected from the major wetland basins in KRRBCW. The investigation results show that more than 97% of total coliforms (TC), 55% of biochemical oxygen demand (BOD), and 30% of nutrients [e.g. total nitrogen (TN), total phosphorus (TP)] were removed via the constructed wetland system. However, results from the sediment analyses show that wetland sediments contained high concentrations of metals (e.g. Cu, Fe, Zn, Cr, and Mn), organic contents (sediment oxygen demand = 1.7 to 7.6 g O2/m2 d), and nutrients (up to 18.7 g/kg of TN and 1.22 g/kg of TN). Thus, sediments should be excavated periodically to prevent the release the pollutants into the wetland system and causing the deterioration of wetland water quality. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal that a variation in microbial diversity in the wetland systems was observed. Results from the DGGE analysis indicate that all sediment samples contained significant amounts of microbial ribospecies, which might contribute to the carbon degradation and nitrogen removal. Gradual disappearance of E. coli was also observed along the flow courses through natural attenuation mechanisms.


2008 ◽  
Vol 58 (2) ◽  
pp. 435-438 ◽  
Author(s):  
M. Kornaros ◽  
C. Marazioti ◽  
G. Lyberatos

SBRs are usually preferred as small and decentralized wastewater treatment systems. We have demonstrated previously that using a frequent enough switching between aerobic and anoxic conditions and a specific to the treated wastewater aerobic to anoxic phase ratio, it is possible to by-pass the second step of nitrification (i.e. conversion of nitrite to nitrate nitrogen). This innovative process for nitrate by-pass has been branded as UP-PND (University of Patras-Partial Nitrification Denitrification) (WO 2006/129132). The proved methodology was successfully transferred from a lab-scale SBR reactor treating synthetic wastewater to a pilot-scale SBR system treating real wastewater. In this work we present the results from the operation of this pilot-scale SBR, constructed in the Wastewater Treatment Plant of Patras (Greece), using 6-hour, 8-hour and 12-hour cycles. It is demonstrated that three pairs of aerobic/anoxic phases with a relative duration of 1:2 (8-hour cycle) and 2:3 (12-hour cycle) secures the desired by-pass of nitrate production.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 381-386 ◽  
Author(s):  
R.R. Shrestha ◽  
R. Haberl ◽  
J. Laber ◽  
R. Manandhar ◽  
J. Mader

Surface water pollution is one of the serious environmental problems in urban centers in Nepal due to the discharge of untreated wastewater into the river-system, turning them into open sewers. Wastewater treatment plants are almost non-existent in the country except for a few in the Kathmandu Valley and even these are not functioning well. Successful implementation of a few constructed wetland systems within the past three years has attracted attention to this promising technology. A two-staged subsurface flow constructed wetland for hospital wastewater treatment and constructed wetlands for treatment of greywater and septage is now becoming a demonstration site of constructed wetland systems in Nepal. Beside these systems, five constructed wetlands have already been designed and some are under construction for the treatment of leachate and septage in Pokhara municipality, wastewater in Kathmandu University, two hospitals and a school. This paper discusses the present condition and treatment performance of constructed wetlands that are now in operation. Furthermore, the concept of the treatment wetlands under construction is also described here. With the present experience, several recommendations are pointed out for the promotion of this technology in the developing countries.


Author(s):  
Swapnil Hiwrale

The idea of the project is predicated on the methodology of preventing the wastewater and the way to form the water pure by using various techniques to form water purification. Nowadays the matter of water shortage increases especially we face the water problem in summer seasons only. we are designing and portable hybrid water solution for the treatment of wastewater during this study, pilot-scale hybrid constructed wetlands (CWs) and multistage horizontal subsurface flow CWs (HF CWs) are studied and compared for the treatment of raw urban wastewater. Additionally, the sand became clogged, while the mulch failed to. The effect of water height on the average pollutant removal wasn't determined but HF10 performed better regarding compliance with legal regulations. With this idea of the project, we could see how we will purify the wastewater and the way much we can see the index of the water purification. A survey of the magnitude of water-related stress at villages on the subject of a college campus or Maharashtra villages affects rural life. Especially in the summer seasons. Problems of availability, accessibility, and quality of Water In Maharashtra 17 districts are that which is laid low with water crises. Maharashtra had approved over R.s 7000 corer to complete the potable project in the scarcity hit area. In India 4% of water resources available from 18% water available in word. Wetland technology can provide cheap and effective wastewater treatment in both temperature and tropical climates and is suitable for adoption in both industrialized likewise as in developing nations this method is utilized for the removal of a range of pollutants and a broad verity of wastewater worldwide. it's one of the simplest methods to treated wastewater at source premises, effectively and economically. This general term accustomed describe different degrees of treatment, so as of skyrocketing treatment levels are preliminary, primary, secondary, and tertiary or advance wastewater treatment. Disinfection to get rid of pathogens sometimes follows the last treatment steps. After treatment of wastewater from constructed wetland reactor, 90 to 95% BOD is going to be satisfied than 85 to 90% Turbidity is going to be removed, and 70 to 80% Nutrient are going to be removed by phytoremediation method. Constructed wetland technology has played a vital role in achieving the changes in wastewater.


2021 ◽  
Vol 896 (1) ◽  
pp. 012030
Author(s):  
L F Santosa ◽  
Sudarno ◽  
B Zaman

Abstract Plants have a vital role in constructed wetlands because they provide oxygen in removing pollutants, as a medium of microorganisms, as absorbers of nutrients and other pollutants, must be resistant to high levels of pollutant loads and stressful conditions. Several plants have potential for constructed wetland, namely Phragmites sp., Typha sp., Canna indica, Colocasia esculenta, Eichornia crassipes, Eleocharis dulcis, and others. Eleocharis dulcis is a local plant commonly found in South Kalimantan. Eleocharis dulcis in the local, namely Purun tikus, grows in tidal swamps and grows in areas of high soil acidity (pH 2.5 – 3.5). Eleocharis dulcis can be used in tackling reclamation waste of acid sulfate soil which can absorb 1.45% of N elements; Cu 15 ppm; P 0.08%; Zn 48 ppm; Mg 0.16%; Fe 1.386 ppm; S 0.18%; Mn 923 ppm; K 2.05%; and Ca 0.22%. According to several studies that have been carried out, Eleocharis dulcis have been shown to reduce several pollutant loads such as Hg 99.84%; Pb; Cd; Fe 85.68%; SO4; Mn 78.94%; BOD 98.74%; COD 98.73%; and turbidity 80% also. The local plant Eleocharis dulcis can be potentially used as wastewater treatment, especially in a constructed wetland systems.


2003 ◽  
Vol 48 (2) ◽  
pp. 97-104 ◽  
Author(s):  
R. Stott ◽  
E. May ◽  
D.D. Mara

Parasite removal and low cost systems for wastewater treatment have become increasingly important requirements in developed and developing countries to safeguard public health from wastewater-associated intestinal diseases. Pilot and field-scale ponds and wetlands in Brazil and Egypt have been investigated for the fate and removal of eggs of human intestinal parasites from domestic wastewater. In northeast Brazil, parasite removal was investigated for a series of five waste stabilisation ponds treating raw wastewater. In Egypt, parasite removal was studied for Gravel Bed Hydroponic constructed wetlands treating partially treated wastewater. Influents to ponds and wetlands contained a variety of parasite helminth eggs (e.g. Ascaris, hookworm, Trichuris, and Hymenolepis spp.). The ponds consistently removed parasite eggs though rate of removal by individual ponds may have been related to influent egg numbers and extent of short-circuiting. Parasite eggs were reduced on average by 94% and 99.9% in the anaerobic and facultative ponds respectively. No eggs were found in effluent from the second maturation pond. In the wetland system, parasite removal varied with reedbed length. The majority of parasite eggs were retained within the first 25 m. Parasite eggs were reduced on average by 98% after treatment in 50 m beds and completely removed after treatment in 100 m beds.


2021 ◽  
Vol 13 (3) ◽  
pp. 1363
Author(s):  
Jingsi Xiao ◽  
Ulrike Alewell ◽  
Ingo Bruch ◽  
Heidrun Steinmetz

Global trends such as climate change and the scarcity of sustainable raw materials require adaptive, more flexible and resource-saving wastewater infrastructures for rural areas. Since 2018, in the community Reinighof, an isolated site in the countryside of Rhineland Palatinate (Germany), an autarkic, decentralized wastewater treatment and phosphorus recovery concept has been developed, implemented and tested. While feces are composted, an easy-to-operate system for producing struvite as a mineral fertilizer was developed and installed to recover phosphorus from urine. The nitrogen-containing supernatant of this process stage is treated in a special soil filter and afterwards discharged to a constructed wetland for grey water treatment, followed by an evaporation pond. To recover more than 90% of the phosphorus contained in the urine, the influence of the magnesium source, the dosing strategy, the molar ratio of Mg:P and the reaction and sedimentation time were investigated. The results show that, with a long reaction time of 1.5 h and a molar ratio of Mg:P above 1.3, constraints concerning magnesium source can be overcome and a stable process can be achieved even under varying boundary conditions. Within the special soil filter, the high ammonium nitrogen concentrations of over 3000 mg/L in the supernatant of the struvite reactor were considerably reduced. In the effluent of the following constructed wetland for grey water treatment, the ammonium-nitrogen concentrations were below 1 mg/L. This resource efficient decentralized wastewater treatment is self-sufficient, produces valuable fertilizer and does not need a centralized wastewater system as back up. It has high potential to be transferred to other rural communities.


Sign in / Sign up

Export Citation Format

Share Document