scholarly journals Amino Acid Supplementation to Reduce Environmental Impacts of Broiler and Pig Production: A Review

2021 ◽  
Vol 8 ◽  
Author(s):  
Léa Cappelaere ◽  
Josselin Le Cour Grandmaison ◽  
Nicolas Martin ◽  
William Lambert

Poultry and swine farming are large contributors to environmental impacts, such as climate change, eutrophication, acidification, and air and water pollution. Feed production and manure management are identified as the main sources of these impacts. Reducing dietary crude protein levels is a nutritional strategy recognized to both decrease the use of high-impact feed ingredients and alter manure composition, reducing emissions of harmful components. For a successful implementation of this technique, feed-grade amino acid supplementation is crucial to maintaining animal performance. Reducing crude protein lowers nitrogen excretion, especially excess nitrogen excreted in urea or uric acid form, improving nitrogen efficiency. At the feed-gate, low–crude protein diets can reduce the carbon footprint of feed production through changes in raw material inclusion. The magnitude of this reduction mainly depends on the climate change impact of soybean meal and its land-use change on the feed-grade amino acids used. Reducing dietary crude protein also lowers the environmental impact of manure management in housing, storage, and at spreading: nitrogen emissions from manure (ammonia, nitrates, nitrous oxide) are reduced through reduction of nitrogen excretion. Moreover, synergetic effects exist with nitrogen form, water excretion, and manure pH, further reducing emissions. Volatilization of nitrogen is more reduced in poultry than in pigs, but emissions are more studied and better understood for pig slurry than poultry litter. Ammonia emissions are also more documented than other N-compounds. Low–crude protein diets supplemented with amino acids is a strategy reducing environmental impact at different stages of animal production, making life cycle assessment the best-suited tool to quantify reduction of environmental impacts. Recent studies report an efficient reduction of environmental impacts with low–crude protein diets. However, more standardization of limits and methods used is necessary to compare results. This review summarizes the current knowledge on mitigation of environmental impacts with low–crude protein diets supplemented with amino acids in poultry and swine, its quantification, and the biological mechanisms involved. A comparison between pigs and poultry is also included. It provides concrete information based on quantified research for decision making for the livestock industry and policy makers.

1971 ◽  
Vol 11 (53) ◽  
pp. 619 ◽  
Author(s):  
W Turner ◽  
GG Payne

High protein wheat was the sole cereal in 20 and 25 per cent crude protein broiler starter diets. On the. 25 per cent protein diet, performance was maximized without amino acid supplementation. Using high protein wheat in 20 per cent protein diets, growth rate was improved by l-lysine supplementation of 0.3 per cent. However, this growth rate was not at a maximum level. Some other dietary factor was necessary, and this did not appear to be essential amino acids, singly or in combination.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 729 ◽  
Author(s):  
Peter H. Selle ◽  
Juliano Cesar de Paula Dorigam ◽  
Andreas Lemme ◽  
Peter V. Chrystal ◽  
Sonia Y. Liu

: This review explores the premise that non-bound (synthetic and crystalline) amino acids are alternatives to soybean meal, the dominant source of protein, in diets for broiler chickens. Non-bound essential and non-essential amino acids can partially replace soybean meal so that requirements are still met but dietary crude protein levels are reduced. This review considers the production of non-bound amino acids, soybeans, and soybean meal and discusses the concept of reduced-crude protein diets. There is a focus on specific amino acids, including glycine, serine, threonine, and branched-chain amino acids, because they may be pivotal to the successful development of reduced-crude protein diets. Presently, moderate dietary crude protein reductions of approximately 30 g/kg are feasible, but more radical reductions compromise broiler performance. In theory, an ‘ideal’ amino acid profile would prevent this, but this is not necessarily the case in practice. The dependence of the chicken-meat industry on soybean meal will be halved if crude protein reductions in the order of 50 g/kg are attained without compromising the growth performance of broiler chickens. In this event, synthetic and crystalline, or non-bound, amino acids will become viable alternatives to soybean meal in chicken-meat production.


2013 ◽  
Vol 2 (3) ◽  
pp. 52 ◽  
Author(s):  
Malomo G. A. ◽  
Bolu S. A. ◽  
Olutade S. G.

<p>This study assessed the effects of dietary crude protein on performance and nitrogen economy of broilers. Chicks were allotted to 22, 20, 18 and 16% crude protein corn-soy diets in a completely randomized design for forty-two days. Several essential amino acids were observed to be deficient compared to recommendations for broiler chicks as the dietary crude protein level reduced. Feed intake, weight gain, feed to gain ratio, faecal nitrogen, nitrogen retention, anthropogenic potential and dressing percentage were influenced (P &lt; 0.05) by the dietary treatments. However, mortality was not significantly different (P &gt; 0.05). Feed intake, weight gain, nitrogen intake and output were significantly (P &lt; 0.05) depressed as the CP level reduced. However, the best (P &lt; 0.05) nitrogen retention and percentage faecal nitrogen was recorded for broilers fed 20% crude protein diet. Serum total protein, albumin, uric acid, creatinine and glucose were affected (P &lt; 0.05) across treatments. It was concluded that there is a limit to which dietary crude protein of broilers could be reduced without any detrimental effects on the performance and nitrogen economy of the birds, even when the requirements for methionine and lysine has been met, as several other amino acids could be limiting. Consequently, to achieve significant improvement in nitrogen economy and reduction in amount of faecal nitrogen, 20% crude protein diets could be fed to broilers. However, there may be need to further manipulate the amino acid profile of the diet so as to improve its performance to be at par with higher crude protein diets.</p>


1995 ◽  
Vol 1995 ◽  
pp. 37-37
Author(s):  
P.A. Lee ◽  
R.M. Kay ◽  
P.J. Fullarton ◽  
A.W.R. Cullin ◽  
S. Jagger

In the UK, pollution of the water system with nitrate nitrogen leaching from the soil is seen as a major problem and farm animal effluents have been identified as a major source of nitrate pollution. It would, therefore, be beneficial to the livestock producer and to the environment if the nitrogen excretion from animals could be kept to a minimum. To limit the excretion of nitrogen by the pig, it is necessary to supply amino acids in the diet in better agreement with its dietary requirements. This could be achieved either by feeding diets according to the pig's requirements based on age and/or weight (phase feeding) or by improving protein quality. The best protein quality would be that which has the same balance of essential amino acids (EAA) with respect to lysine as that in ideal protein. Diets formulated on the basis of total dietary EAA on an ideal protein basis, using crystalline EAA, could enable lower crude protein (CP) diets to be offered whilst maintaining nitrogen retention (NR). The majority of the experimental evidence to support the theory of low crude protein (CP) diets comes from either the use of cereals alone with crystalline amino acid supplementation or diets high in maize by-products and low in lysine : digestible energy (Lys : DE) which contrast with the type of diets commonly used in the UK. A series of experiments have therefore been carried out to investigate more thoroughly the possibility of using dietary manipulation, based on diet specifications and ingredients more appropriate to the UK, to reduce nitrogen excretion by the pig, whilst at the same time maintaining the high level of lean gain achieved by UK stock. The object of the present experiment was to determine the effect of isocaloric diets which differed in CP content but had similar levels of essential amino acids (EAA), on nitrogen excretion (NE) and retention (NR) by growing and finishing pigs; these diets being formulated on an ileal digestible EAA (IEAA) basis.


2017 ◽  
Vol 95 (suppl_2) ◽  
pp. 115-116
Author(s):  
N. Regmi ◽  
J. Babcock ◽  
D. Chamberlin ◽  
K. J. Touchette ◽  
J. L. De Vries ◽  
...  

2008 ◽  
Vol 14 (4) ◽  
pp. 325 ◽  
Author(s):  
S. PERTTILÄ ◽  
J. VALAJA ◽  
T. JALAVA

Using ileal digestible amino acids in feed optimising will intensify feed protein utilizing and decrease nitrogen excretion to the environment. The study determined the apparent ileal digestibility (AID) coefficients of amino acids in barley, wheat, oats, triticale, maize, and dehulled oats in the diets of 180 Ross broiler chickens (aged 24–35 days). The birds were fed semi-purified diets that contained grain as the sole protein source and chromium-mordanted straw as an indigestible marker. The AID coefficients of the nutrients were assessed using the slaughter technique, and the apparent metabolisable energy (AME) was determined using total excreta collection. The ileal digestibility of the dry matter and organic matter were the highest in maize. The AME of maize was higher than that of other cereals. The ileal digestibility of crude protein was higher in wheat than that in barley, oats and dehulled oats. The AME of wheat was similar to that of barley and oats but lower than that of triticale and dehulled oats. The amino acid AID was highest in wheat (0.86) and triticale (0.85) and lowest in oats (0.79) and barley 0.77). The average amino acid AID was 0.81 in dehulled oats. The threonine AID was the same in all tested ingredients. The lysine, methionine, and cystine AID coefficients were 0.81, 0.79, and 0.71 respectively for barley; 0.86, 0.84, and 0.38 respectively for oats; 0.87, 0.86, and 0.53 respectively for dehulled oats; 0.84, 0.90, and 0.66 respectively for maize; 0.89, 0.88, and 0.77 respectively for triticale; and 0.87, 0.85, and 0.71 respectively for wheat. Results indicated that AME –values of domestic grains (barley, oats and wheat) are in the same level. Especially, low AME value of wheat needs further investigation.;


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Dong Wang ◽  
Guoshun Chen ◽  
Lili Song ◽  
Mingjie Chai ◽  
Yongfeng Wang ◽  
...  

Diets containing different crude protein levels (16%, 14%, and 12%) were created to feed Bamei pigs in order to study the effect of these compositions on intestinal colonies. Therefore, 27 healthy Bamei pigs of similar weight ( 20.99   kg ± 0.16   kg ) were selected and randomly divided into three groups for microbial diversity analysis. The results of this study show that microbial diversities and abundances in Bamei pig jejunum and caecum samples after feeding with different dietary protein levels were significantly different. Dietary crude protein level exerted no significant effect on the Shannon index for cecum microbes in these pigs, while Simpson, ACE, and Chao1 indices for group I were all significantly higher than those of either the control group or group II ( P < 0.05 ). Indeed, data show that microbial diversities and abundances in the 14% protein level group were higher than those in either the 16% or 12% groups. Dominant bacteria present in jejunum and cecum samples given low-protein diets were members of the phyla Firmicutes and Bacteroidetes. Data show that as dietary crude protein level decreases, representatives of the microbial flora genus Lactobacillus in jejunum and cecum samples gradually increases. Values for the KEGG functional prediction of microbial flora at different dietary protein levels also show that genes of jejunum and cecum microorganisms were mainly enriched in the “metabolism” pathway and indicate that low protein diets increase intestinal metabolic activity. Therefore, we recommend that Bamei pig dietary protein levels are reduced 2% from their existing level of 16% crude protein. We also suggest that essential synthetic amino acids (AA) are added to optimize this ideal protein model as this will increase intestinal flora diversity in these pigs and enhance health. These changes will have a positive effect in promoting the healthy growth of Bamei pigs.


Sign in / Sign up

Export Citation Format

Share Document