scholarly journals The Ovarian Development Genes of Bisexual and Parthenogenetic Haemaphysalis longicornis Evaluated by Transcriptomics and Proteomics

2021 ◽  
Vol 8 ◽  
Author(s):  
Tianhong Wang ◽  
Tongxuan Wang ◽  
Meng Zhang ◽  
Xinyue Shi ◽  
Miao Zhang ◽  
...  

The tick Haemaphysalis longicornis has two reproductive groups: a bisexual group (HLBP) and a parthenogenetic group (HLPP). The comparative molecular regulation of ovarian development in these two groups is unexplored. We conducted transcriptome sequencing and quantitative proteomics on the ovaries of HLBP and HLPP, in different feeding stages, to evaluate the molecular function of genes associated with ovarian development. The ovarian tissues of HLBP and HLPP were divided into three feeding stages (early-fed, partially-fed and engorged). A total of 87,233 genes and 2,833 proteins were annotated in the ovary of H. longicornis in the different feeding stages. The differentially expressed genes (DEGs) of functional pathway analysis indicated that Lysosome, MAPK Signaling Pathway, Phagosome, Regulation of Actin Cytoskeleton, Endocytosis, Apoptosis, Insulin Signaling Pathway, Oxidative Phosphorylation, and Sphingolipid Metabolism were most abundant in the ovary of H. longicornis in the different feeding stages. Comparing the DEGs between HLBP and HLPP revealed that the ABC Transporter, PI3K-Akt Signaling Pathway and cAMP Signaling Pathway were the most enriched and suggested that the functions of signal transduction mechanisms may have changed during ovarian development. The functions of the annotated proteome of ovarian tissues were strongly correlated with the transcriptome annotation results, and these were further validated using quantitative polymerase chain reaction (qPCR). In the HLBP, the expression of cathepsin L, secreted proteins and glycosidase proteins was significantly up-regulated during feeding stages. In the HLPP, the lysozyme, yolk proteins, heat shock protein, glutathione S transferase, myosin and ATP synthase proteins were up-regulated during feeding stages. The significant differences of the gene expression between HLBP and HLPP indicated that variations in the genetic background and molecular function might exist in the two groups. These results provide a foundation for understanding the molecular mechanism and exploring the functions of genes in the ovarian development of different reproductive groups of H. longicornis.

2021 ◽  
Vol 49 (5) ◽  
pp. 56-62
Author(s):  
Hongtao Chen ◽  
Li Zhang

Background and objective: Osteoarthritis is the most common chronic osteoarthrosis disease. There are complex factors that lead to osteoarthritis. Therefore, it is essential to investigate the molecular mechanism of osteoarthritis, especially the mechanism of articular cartilage degeneration. In this study, the mechanism of FPR1 (formyl peptide receptor 1) in LPS (lipopolysaccharide) induced chondrogenic cell ATDC5 was investigated.Materials and methods: We employed real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay to analyze the expression level of FPR1 in ATDC5 cell linesinduced by LPS at 0, 2.5, 5, and 10 μg/mL concentrations. Then we constructed the FPR1 knockdown plasmid to transfect the LPS-ATDC5. MTT assay was used to test cell viability in control, LPS, LPS+shNC and LPS+shFPR1 groups. ELISA and RT-qPCR assay were employed to examine the TNF-α (tumor necrosis factor-α)、IL-6 and IL-1β expression level. Flow cytometry and western blot assay were employed to analyze the apoptosis of LPS-ATDC5. Finally, we utilized the western blot assay to text related protein expression level of MAPK (mitogen-activated protein kinase) signaling pathway.Results: In this study, we found the expression level of FPR1 was increased in LPS-ATDC5, downregulation of FPR1 improves the survival rate and alleviates inflammatory response of LPS-ATDC5. Meanwhile, downregulation of FPR1 alleviates apoptosis of LPS-ATDC5. Finally, downregulation of FPR1 inhibits the MAPK signal pathway.Conclusion: Present study revealed that FPR1 was highly expressed in LPS-induced chondrocytes ATDC5, and the downregulation of FPR1 abated the inflammatory response and apoptosis of LPS-ATDC5 cells by regulating the MAPK signaling pathway.


2018 ◽  
Vol 315 (2) ◽  
pp. C225-C235 ◽  
Author(s):  
Ying Chen ◽  
Xiao-Yun Cao ◽  
Ying-Ni Li ◽  
Yu-Yan Qiu ◽  
Ying-Na Li ◽  
...  

Some microRNAs (miRs) are dysregulated in cancers, and aberrant miR expression has been reported to correlate with chemoresistance of cancer cells. Therefore, the present study aims at investigating the effects of microRNA-139-5p (miR-139-5p) on cisplatin resistance of ovarian cancer (OC) with involvement of ring finger protein 2 (RNF2) and the mitogen-activated protein kinase (MAPK) signaling pathway. OC tissues were obtained from 66 primary OC patients. The cisplatin-sensitive A2780 and cisplatin-resistant A2780/DDP cell lines were collected for construction of RNF2 silencing and overexpressed plasmids. Cell vitality and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and annexin V-FITC/propidium iodide double-staining, respectively. Next, expression of RNF2, extracellular signal-related kinase, and p38 was determined by quantitative reverse transcription-quantitative polymerase chain reaction and Western blot analysis. Finally, the volume of xenograft tumors in BALB/c nude mice was detected. RNF2 and miR-139-5p were identified to be involved in OC. In addition, MAPK activation and RNF2 were related to cisplatin resistance of OC. miR-139-5p was downregulated in cisplatin-resistant OC tissues, and miR-139-5p overexpression could inhibit cell vitality, reduce cisplatin resistance, and promote apoptosis of OC cells. Furthermore, miR-139-5p combined with MAPK inhibitors more obviously reduced cisplatin resistance of OC. Taken together, this study demonstrated that miR-139-5p overexpression combined with inactivation of the MAPK signaling pathway can reverse the cisplatin resistance of OC by suppressing RNF2. Thus, miR-139-5p overexpression might be a future therapeutic strategy for OC.


2020 ◽  
Vol 23 (8) ◽  
pp. 805-813
Author(s):  
Ai Jiang ◽  
Peng Xu ◽  
Zhenda Zhao ◽  
Qizhao Tan ◽  
Shang Sun ◽  
...  

Background: Osteoarthritis (OA) is a joint disease that leads to a high disability rate and a low quality of life. With the development of modern molecular biology techniques, some key genes and diagnostic markers have been reported. However, the etiology and pathogenesis of OA are still unknown. Objective: To develop a gene signature in OA. Method: In this study, five microarray data sets were integrated to conduct a comprehensive network and pathway analysis of the biological functions of OA related genes, which can provide valuable information and further explore the etiology and pathogenesis of OA. Results and Discussion: Differential expression analysis identified 180 genes with significantly expressed expression in OA. Functional enrichment analysis showed that the up-regulated genes were associated with rheumatoid arthritis (p < 0.01). Down-regulated genes regulate the biological processes of negative regulation of kinase activity and some signaling pathways such as MAPK signaling pathway (p < 0.001) and IL-17 signaling pathway (p < 0.001). In addition, the OA specific protein-protein interaction (PPI) network was constructed based on the differentially expressed genes. The analysis of network topological attributes showed that differentially upregulated VEGFA, MYC, ATF3 and JUN genes were hub genes of the network, which may influence the occurrence and development of OA through regulating cell cycle or apoptosis, and were potential biomarkers of OA. Finally, the support vector machine (SVM) method was used to establish the diagnosis model of OA, which not only had excellent predictive power in internal and external data sets (AUC > 0.9), but also had high predictive performance in different chip platforms (AUC > 0.9) and also had effective ability in blood samples (AUC > 0.8). Conclusion: The 4-genes diagnostic model may be of great help to the early diagnosis and prediction of OA.


2020 ◽  
Vol 15 ◽  
Author(s):  
Mingxuan Yang ◽  
Liangtao Zhao ◽  
Xuchang Hu ◽  
Haijun Feng ◽  
Xuewen Kang

Background: Osteosarcoma (OS) is one of the most common primary malignant bone tumors in teenagers. Emerging studies demonstrated TWEAK and Fn14 were involved in regulating cancer cell differentiation, proliferation, apoptosis, migration and invasion. Objective: The present study identified differently expressed mRNAs and lncRNAs after anti-TWEAK treatment in OS cells using GSE41828. Methods: We identified 922 up-regulated mRNAs, 863 downregulated mRNAs, 29 up-regulated lncRNAs, and 58 down-regulated lncRNAs after anti-TWEAK treatment in OS cells. By constructing PPI networks, we identified several key proteins involved in anti-TWEAK treatment in OS cells, including MYC, IL6, CD44, ITGAM, STAT1, CCL5, FN1, PTEN, SPP1, TOP2A, and NCAM1. By constructing lncRNAs coexpression networks, we identified several key lncRNAs, including LINC00623, LINC00944, PSMB8-AS1, LOC101929787. Result: Bioinformatics analysis revealed DEGs after anti-TWEAK treatment in OS were involved in regulating type I interferon signaling pathway, immune response related pathways, telomere organization, chromatin silencing at rDNA, and DNA replication. Bioinformatics analysis revealed differently expressed lncRNAs after antiTWEAK treatment in OS were related to telomere organization, protein heterotetramerization, DNA replication, response to hypoxia, TNF signaling pathway, PI3K-Akt signaling pathway, Focal adhesion, Apoptosis, NF-kappa B signaling pathway, MAPK signaling pathway, FoxO signaling pathway. Conclusion: : This study provided useful information for understanding the mechanisms of TWEAK underlying OS progression and identifying novel therapeutic markers for OS.


2020 ◽  
Vol 19 (4) ◽  
pp. 248-256
Author(s):  
Yangmin Zheng ◽  
Ziping Han ◽  
Haiping Zhao ◽  
Yumin Luo

Conclusion: Stroke is a complex disease caused by genetic and environmental factors, and its etiological mechanism has not been fully clarified yet, which brings great challenges to its effective prevention and treatment. MAPK signaling pathway regulates gene expression of eukaryotic cells and basic cellular processes such as cell proliferation, differentiation, migration, metabolism and apoptosis, which are considered as therapeutic targets for many diseases. Up to now, mounting evidence has shown that MAPK signaling pathway is involved in the pathogenesis and development of ischemic stroke. However, the upstream kinase and downstream kinase of MAPK signaling pathway are complex and the influencing factors are numerous, the exact role of MAPK signaling pathway in the pathogenesis of ischemic stroke has not been fully elucidated. MAPK signaling molecules in different cell types in the brain respond variously after stroke injury, therefore, the present review article is committed to summarizing the pathological process of different cell types participating in stroke, discussed the mechanism of MAPK participating in stroke. We further elucidated that MAPK signaling pathway molecules can be used as therapeutic targets for stroke, thus promoting the prevention and treatment of stroke.


Neoplasia ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 607-623
Author(s):  
Hui Xu ◽  
Xiaomei Yang ◽  
Xiaofeng Xuan ◽  
Di Wu ◽  
Jieru Zhang ◽  
...  

2016 ◽  
Vol 33 ◽  
pp. 63-72 ◽  
Author(s):  
Yu-Chen Cheng ◽  
You-Ming Ding ◽  
Dueng-Yuan Hueng ◽  
Jang-Yi Chen ◽  
Ying Chen

Sign in / Sign up

Export Citation Format

Share Document