scholarly journals Biomarkering metabolic activities of the tapeworm Khawia armeniaca (Cholodkovsky, 1915) in association to its fish host Barbus grypus (Hekle, 1843)

2021 ◽  
Vol 35 (1) ◽  
pp. 169-176
Author(s):  
Bushra Al-Niaeemi ◽  
Maruah Dawood
Author(s):  
Delbert E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
T. Fast ◽  
J. Stevenson ◽  
...  

Space Lab 3 (SL-3) was flown on Shuttle Challenger providing an opportunity to measure the effect of spaceflight on rat testes. Cannon developed the idea that organisms react to unfavorable conditions with highly integrated metabolic activities. Selye summarized the manifestations of physiological response to nonspecific stress and he pointed out that atrophy of the gonads always occurred. Many papers have been published showing the effects of social interaction, crowding, peck order and confinement. Flickinger showed delayed testicular development in subordinate roosters influenced by group numbers, social rank and social status. Christian reported increasing population size in mice resulted in adrenal hypertrophy, inhibition of reproductive maturation and loss of reproductive function in adults. Sex organ weights also declined. Two male dogs were flown on Cosmos 110 for 22 days. Fedorova reported an increase of 30 to 70% atypical spermatozoa consisting of tail curling and/or the absence of a tail.


2019 ◽  
Vol 3 (5) ◽  
pp. 573-578 ◽  
Author(s):  
Kwanwoo Shin

Living cells naturally maintain a variety of metabolic reactions via energy conversion mechanisms that are coupled to proton transfer across cell membranes, thereby producing energy-rich compounds. Until now, researchers have been unable to maintain continuous biochemical reactions in artificially engineered cells, mainly due to the lack of mechanisms that generate energy-rich resources, such as adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). If these metabolic activities in artificial cells are to be sustained, reliable energy transduction strategies must be realized. In this perspective, this article discusses the development of an artificially engineered cell containing a sustainable energy conversion process.


2020 ◽  
Vol 142 ◽  
pp. 83-97
Author(s):  
A Chandran ◽  
PU Zacharia ◽  
TV Sathianandan ◽  
NK Sanil

The present study describes a new species of myxosporean, Ellipsomyxa ariusi sp. nov., infecting the gallbladder of the threadfin sea catfish Arius arius (Hamilton, 1822). E. ariusi sp. nov. is characterized by bivalvular, ellipsoid or elongate-oval myxospores with smooth spore valves and a straight suture, arranged at an angle to the longitudinal spore axis. Mature myxospores measured 10.1 ± 0.8 µm in length, 6.8 ± 0.5 µm in width and 7.7 ± 0.7 µm in thickness. Polar capsules are equal in size and oval to pyriform in shape. They are positioned at an angle to the longitudinal myxospore axis and open in opposite directions. Polar capsules measured 2.8 ± 0.3 µm in length and 2.5 ± 0.4 µm in width; polar filaments formed 4-5 coils, and extended to 32.2 ± 2.1 µm in length. Monosporic and disporic plasmodial stages attached to the wall of gallbladder. Molecular analysis of the type specimen generated a 1703 bp partial SSU rDNA sequence (MN892546), which was identical to the isolates from 3 other locations. In phylogenetic analyses, genus Ellipsomyxa appeared monophyletic and E. ariusi sp. nov. occupied an independent position in maximum likelihood and Bayesian inference trees with high bootstrap values. The overall prevalence of infection was 54.8% and multiway ANOVA revealed that it varied significantly with location, year, season, sex and size of the fish host. Histopathological changes associated with E. ariusi sp. nov. infection included swelling, vacuolation and detachment of epithelial layer, reduced mucus production and altered consistency and colour of bile. Based on the morphologic, morphometric and molecular differences with known species of Ellipsomyxa, and considering differences in host and geographic locations, the present species is treated as new and the name Ellipsomyxa ariusi sp. nov. is proposed.


2000 ◽  
Vol 628 ◽  
Author(s):  
Giovanni Carturan ◽  
Renzo Dal Monte ◽  
Maurizio Muraca

ABSTRACTSi-alkoxides in gas phase are reactive towards the surface of animal cells, depositing a homogeneous layer of porous silica. This encapsulation method preserves cell viability and does not alter the hindrance of the biological load.In the prospective use for the design of a hybrid bioartificial liver, hepatocytes in a collagen matrix can be entrapped by the siliceous deposit which provides definite mechanical stability to the collagen matrix and molecular cutoff vs. high molecular weight proteins, including immunoglobulins. The functionality of the encapsulated cell load is maintained for the expressions of typical liver and pancreas metabolic activities.


2017 ◽  
Vol 63 (4) ◽  
pp. 545-556
Author(s):  
Natalya Oskina ◽  
Aleksandr Shcherbakov ◽  
Maksim Filipenko ◽  
Nikolay Kushlinskiy ◽  
L. Ovchinnikova

Currently it is established that cancer is a genetic disease and that somatic mutations are the initiators of the carcinogenic process. The PI3K/AKT/mTOR pathway is an important intracellular signaling pathway regulating the cell growth and metabolic activities. Aberrant activation of the PI3K pathway is commonly observed in many different cancers. In this review we analyze the genetic alterations of PI3K pathway in a variety of human malignancies and discuss their possible implications for diagnosis and therapy.


1998 ◽  
Vol 38 (7) ◽  
pp. 73-79 ◽  
Author(s):  
Hooi-Ling Lee ◽  
Donald DeAngelis ◽  
Hock-Lye Koh

This paper discusses the spatial distribution patterns of the various species of the Unionid mussels as functions of their respective life-cycle characteristics. Computer simulations identify two life-cycle characteristics as major factors governing the abundance of a species, namely the movement range of their fish hosts and the success rate of the parasitic larval glochidia in finding fish hosts. Core mussels species have fish hosts with large movement range to disperse the parasitic larval glochidia to achieve high levels of abundance. Species associated with fish host of limited movement range require high success rate of finding fish host to achieve at least an intermediate level of abundance. Species with low success rate of finding fish hosts coupled with fish hosts having limited movement range exhibit satellite species characteristics, namely rare in numbers and sparse in distributions.


2015 ◽  
Vol 17 (1) ◽  
pp. 109-120
Author(s):  
Zahra Khoshnood ◽  
Reza Khoshnood

Abstract In 2009, 36 fish were sampled from two stations in the Karoon River near an industrial site. Two species of fish, Barbus grypus and Hypophthalmichthys molitrix were analyzed for total mercury (Hg) concentration in liver and muscle tissues. The average concentrations of total Hg in liver of B. grypus were 18.92 and 10.19 μg.g-1 in stations 1 and 2 respectively. The corresponding values for total Hg in edible muscle of Barbus grypus were 8.47 and 0.08 μg.g-1. The average concentrations of Hg in the liver of H. molitrix were 25.49 and 12.52 μg.g-1 in stations 1 and 2 respectively. The values for H. molitrix were 11.88 and 3.2 μg.g-1 in station 1 and station 2 respectively. The results showed that the bioavailability of Hg has increased considerably after industrialization and that these values were higher than the standard values as a result of anthropogenic activities in the region.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P < 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P < 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


Biosensors ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 110 ◽  
Author(s):  
Erika Ferrari ◽  
Cecilia Palma ◽  
Simone Vesentini ◽  
Paola Occhetta ◽  
Marco Rasponi

Organs-on-chip (OoC), often referred to as microphysiological systems (MPS), are advanced in vitro tools able to replicate essential functions of human organs. Owing to their unprecedented ability to recapitulate key features of the native cellular environments, they represent promising tools for tissue engineering and drug screening applications. The achievement of proper functionalities within OoC is crucial; to this purpose, several parameters (e.g., chemical, physical) need to be assessed. Currently, most approaches rely on off-chip analysis and imaging techniques. However, the urgent demand for continuous, noninvasive, and real-time monitoring of tissue constructs requires the direct integration of biosensors. In this review, we focus on recent strategies to miniaturize and embed biosensing systems into organs-on-chip platforms. Biosensors for monitoring biological models with metabolic activities, models with tissue barrier functions, as well as models with electromechanical properties will be described and critically evaluated. In addition, multisensor integration within multiorgan platforms will be further reviewed and discussed.


Sign in / Sign up

Export Citation Format

Share Document