scholarly journals Motion Control System Design for a Flying-Type Firefighting System with Water Jet Actuators

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 275
Author(s):  
Dong-Hun Lee ◽  
Thinh Huynh ◽  
Young-Bok Kim ◽  
Chakir Soumayya

This paper presents the design and modeling of a flying-type fire extinguishing system. Fire accidents present very hazardous environments, and firefighters are in danger of losing their lives while putting out the fire. Strict safety measures should be considered to guarantee safe working conditions for firefighters, which is not the case every time, as fatalities and casualties are still being recorded. For this reason, a novel fire extinguishing system is proposed to provide more safe firefighting and survivor searches. The system studied in this paper is a pilot model that consists of a water jet-based actuation system to control the flying motion of the robot. The dynamic model of this flying robot is derived using the actuation forces, water jet system characteristics, and related information. The mathematical system model is detailed, a sliding-mode control system and a proportional-integral-derivative controller are designed, and comparative simulation tests are carried out.

2012 ◽  
Vol 246-247 ◽  
pp. 893-897
Author(s):  
Ke Ming Lv ◽  
Meng You Huo ◽  
Fang Yi Li

In order to achieve the precise control of the compressed air foam proportioning on the fire engines, in this paper, the PIC microcontroller and the fuzzy control algorithm are used to design the microcontroller-based foam proportioning hybrid fuzzy control system. Taking into account the system cost and ease, we use the software to implement the fuzzy control of DC motor. The controller learns from the experience of skilled operators, and forms fuzzy control rules, finally we identify a number of important control parameters in this paper. The experimental results show that the fuzzy control system can achieve precise control of the mixing ratio


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 747
Author(s):  
Mai The Vu ◽  
Tat-Hien Le ◽  
Ha Le Nhu Ngoc Thanh ◽  
Tuan-Tu Huynh ◽  
Mien Van ◽  
...  

Underwater vehicles (UVs) are subjected to various environmental disturbances due to ocean currents, propulsion systems, and un-modeled disturbances. In practice, it is very challenging to design a control system to maintain UVs stayed at the desired static position permanently under these conditions. Therefore, in this study, a nonlinear dynamics and robust positioning control of the over-actuated autonomous underwater vehicle (AUV) under the effects of ocean current and model uncertainties are presented. First, a motion equation of the over-actuated AUV under the effects of ocean current disturbances is established, and a trajectory generation of the over-actuated AUV heading angle is constructed based on the line of sight (LOS) algorithm. Second, a dynamic positioning (DP) control system based on motion control and an allocation control is proposed. For this, motion control of the over-actuated AUV based on the dynamic sliding mode control (DSMC) theory is adopted to improve the system robustness under the effects of the ocean current and model uncertainties. In addition, the stability of the system is proved based on Lyapunov criteria. Then, using the generalized forces generated from the motion control module, two different methods for optimal allocation control module: the least square (LS) method and quadratic programming (QP) method are developed to distribute a proper thrust to each thruster of the over-actuated AUV. Simulation studies are conducted to examine the effectiveness and robustness of the proposed DP controller. The results show that the proposed DP controller using the QP algorithm provides higher stability with smaller steady-state error and stronger robustness.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1292
Author(s):  
Hanying Gao ◽  
Guoqiang Zhang ◽  
Wenxue Wang ◽  
Xuechen Liu

The six-phase motor control system has low torque ripple, low harmonic content, and high reliability; therefore, it is suitable for electric vehicles, aerospace, and other applications requiring high power output and reliability. This study presents a superior sensorless control system for a six-phase permanent magnet synchronous motor (PMSM). The mathematical model of a PMSM in a stationary coordinate system is presented. The information of motor speed and position is obtained by using a sliding mode observer (SMO). As torque ripple and harmonic components affect the back electromotive force (BEMF) estimated value through the traditional SMO, the function of the frequency-variable tracker of the stator current (FVTSC) is used instead of the traditional switching function. By improving the SMO method, the BEMF is estimated independently, and its precision is maintained under startup or variable-speed states. In order to improve the estimation accuracy and resistance ability of the observer, the rotor position error was taken as the disturbance term, and the third-order extended state observer (ESO) was constructed to estimate the rotational speed and rotor position through the motor mechanical motion equation. Finally, the effectiveness of the method is verified by simulation and experiment results. The proposed control strategy can effectively improve the dynamic and static performance of PMSM.


2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


2011 ◽  
Vol 66-68 ◽  
pp. 1422-1427
Author(s):  
Ting You ◽  
Pei Jiang Li

For optimal control of synchronous machine, chattering phenomenon will appear if traditional slider control is adopted because permanent magnet synchronous machine is a complex nonlinear time-dependent system with strong coupling of current and rotational speed to cause the deterioration of system control performance with load or load disturbance. In this article, based on the mathematical model of permanent magnet synchronous machine, a control system for it, which combines sliding mode control and active disturbance rejection control, is proposed to improve the dynamic performance and robustness of control system. In the control system, sliding mode control is adopted to control the inner current of machine and active disturbance rejection control is adopted to control the outer speed. The load disturbance of system is also estimated and offset. The results of matlab simulation show that the control system can eliminate serious chattering phenomenon existing in sliding mode control, improves the robustness of system for load and system parameter disturbance as well as has great dynamic and static performance.


Sign in / Sign up

Export Citation Format

Share Document