scholarly journals Design and Experimental Validation of a 3-DOF Force Feedback System Featuring Spherical Manipulator and Magnetorheological Actuators

Actuators ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 19 ◽  
Author(s):  
Bao Tri Diep ◽  
Ngoc Diep Nguyen ◽  
Thanh T. Tran ◽  
Quoc Hung Nguyen

This research focuses on the development of a new 3-DOF (Degree of Freedom) force feedback system featuring a spherical arm mechanism and three magnetorheological (MR) brakes, namely two rotary MR brakes and one linear MR brake. The first rotary MR brake is integrated in the waist joint to reflect the horizontal tangent force, the other rotary MR brake is integrated in the shoulder joint to reflect the elevation tangent force, while the linear MR brake is integrated in the sliding joint of the arm to reflect the radial force (approach force). The proposed configuration can reflect a desired force to the operator at the end-effectors of the arm independently in 3 DOFs by controlling the current applied to the coils of the MR brakes. After the introduction, the configuration of the proposed force feedback system is presented. Afterward, the design and conducted simulation of the MR brakes for the systems are provided. The prototype of the force feedback system, which was manufactured for the experiment, is then presented as well as some of the obtained experimental results. Finally, the proposed control system is presented and its implementation to provide a desired feedback force to the operator is provided.

2013 ◽  
Vol 750 ◽  
pp. 64-67
Author(s):  
Wen Yu Zhang ◽  
Dong Ying Ju ◽  
Yao Yao ◽  
Hong Yang Zhao ◽  
Xiao Dong Hu ◽  
...  

In this paper, the established control system and its control algorism of a new twin roll strip caster developed by authors is presented. It is illustrated the roll-gap control strategy of the twin roll strip caster based on a feed forward-feedback system. From the experimental results, the susceptibility of control convergence time, stable and accurate are shown on a higher level than traditional control strategy.


2019 ◽  
Vol 123 (1269) ◽  
pp. 1757-1787
Author(s):  
M. J. Tchatchueng Kammegne ◽  
R. M. Botez

ABSTRACTThe focus of this paper is on the modelling of miniature electromechanical actuators used in a morphing wing application, on the development of a control concept for these actuators, and on the experimental validation of the designed control system integrated in the morphing wing-tip model for a real aircraft. The assembled actuator includes as its main component a brushless direct current motor coupled to a trapezoidal screw by using a gearing system. A Linear Variable Differential Transformer (LVDT) is attached on each actuator giving back the actuator position in millimetres for the control system, while an encoder placed inside the motor provides the position of the motor shaft. Two actuation lines, each with two actuators, are integrated inside the wing model to change its shape. For the experimental model, a full-scaled portion of an aircraft wing tip is used with the chord length of 1.5 meters and equipped on the upper surface with a flexible skin made of composite fibre materials. A controllable voltage provided by a power amplifier is used to drive the actuator system. In this way, three control loops are designed and implemented, one to control the torque and the other two to control the position in a parallel architecture. The parallel position control loops use feedback signals from different sources. For the first position control loop, the feedback signal is provided by the integrated encoder, while for the second one, the feedback signal comes from the LVDT. For the experimental model, the parameters for the torque control, but also for the position control-based encoder signal, are implemented in the power amplifier energising the electrical motor. On the other hand, a National Instruments real-time system is used to implement and test the position control-based LVDT signal. The experimental validation of the developed control system is realised in two independent steps: bench testing with no airflow and wind-tunnel testing. The pressure data provided by a number of Kulite sensors equipping the flexible skin upper surface and the infrared thermography camera visualisations are used to estimate the laminar-to-turbulent transition point position.


Author(s):  
Lyndon Scott Stephens ◽  
Daniel Impellizzeri

In our companion paper, the trapezoidal winding is proposed for use as a self bearing motor that is capable of actively controlling motoring torque, radial force and axial thrust. Of course, this assumes that sensor signals are available for control of these axes. Conventionally, this is done using encoders and proximity sensors. In this paper the authors propose a self sensing approach that uses the back-EMF waveforms of the trapezoidal winding to estimate the angular, radial and thrust positions of the rotor, as well as rotor speed. Both simulated and experimental results are presented that demonstrate the potential of the approach and identify its limitations when applied to a closed loop feedback system. The experimental results indicate that the x, y, z and θ positions can be completely decoupled and estimated using the phase difference information in the back-EMF waveforms. A test actuator demonstrates that large axial displacements in excess of 5–10mm are achievable with the new actuator layout.


Transport ◽  
2005 ◽  
Vol 20 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Rafal Setlak

This article contains a course of work of the construction of a vehicle model that has four electrical motors built into each wheel. During the project two models of a vehicle were constructed (Figs 3,5). A microprocessor based control system has also been designed and built. A vehicle is controlled by a steering unit (Fig 8) which contains a steering wheel with a force feedback system, push buttons, an accelerator and a brake. The connection between a steering unit and a model is realized by interface RS‐485. The driving motors are dc motors with permanent magnets. Power supply consists of an acid battery located in the vehicle. The vehicle control system is divided into two parts. The first part is built into the vehicle (Fig 7) and operates as a vehicle main control system and the second is built into a steering unit and operates as the main control steering system.


2000 ◽  
Vol 12 (3) ◽  
pp. 325-332 ◽  
Author(s):  
Aiguo Ming ◽  
◽  
Makoto Kajitani

We propose a new golf swing robot to simulate dynamic skill of motion control in human golf swing action, that is, multi-step acceleration by dynamic drive. Human swing is simplified as a motion of two-step acceleration, realized by dynamic coupling drive between equivalent shoulder joint and wrist joint. According to the simplified model, a manipulator with one actuated joint and one passive joint equipped with mechanical stopper or brake is proposed as the mechanism of golf swing robot. A small prototype of the golf swing robot to swing a club for junior has been developed, and swing experiments have been done by the robot. The feasibility of the proposed mechanism and control system for golf swing robot is shown by experimental results.


1995 ◽  
Vol 31 (8) ◽  
pp. 301-309 ◽  
Author(s):  
Govert D. Geldof

In integrated water management, the issues are often complex by nature, they are capable of subjective interpretation, are difficult to express in standards and exhibit many uncertainties. For such issues, an equilibrium approach is not appropriate. A non-equilibrium approach has to be applied. This implies that the processes to which the integrated issue pertains, are regarded as “alive”’. Instead of applying a control system as the model for tackling the issue, a network is used as the model. In this network, several “agents”’ are involved in the modification, revision and rearrangement of structures. It is therefore an on-going renewal process (perpetual novelty). In the planning process for the development of a groundwater policy for the municipality of Amsterdam, a non-equilibrium approach was adopted. In order to do justice to the integrated character of groundwater management, an approach was taken, containing the following features: (1) working from global to detailed, (2) taking account of the history of the system, (3) giving attention to communication, (4) building flexibility into the establishing of standards, and (5) combining reason and emotions. A middle course was sought, between static, rigid but reliable on the one hand; dynamic, flexible but vague on the other hand.


1994 ◽  
Vol 29 (4) ◽  
pp. 127-132 ◽  
Author(s):  
Naomi Rea ◽  
George G. Ganf

Experimental results demonstrate bow small differences in depth and water regime have a significant affect on the accumulation and allocation of nutrients and biomass. Because the performance of aquatic plants depends on these factors, an understanding of their influence is essential to ensure that systems function at their full potential. The responses differed for two emergent species, indicating that within this morphological category, optimal performance will fall at different locations across a depth or water regime gradient. The performance of one species was unaffected by growth in mixture, whereas the other performed better in deep water and worse in shallow.


1998 ◽  
Vol 37 (12) ◽  
pp. 285-292 ◽  
Author(s):  
Hiroshi Tsugura ◽  
Tetufumi Watanabe ◽  
Hiroshi Shimazaki ◽  
Shoichi Sameshima

A method for measuring both dissolved ozone (DO3) concentration and UV absorbance was developed adopting ultraviolet (UV) absorption method (JWWA, 1993) using sodium thiosulfate (Na2S2O3) solution for removing residual ozone in ozonated water. A DO3 monitor based on this method was tested. This method was proven to be effective from experimental results. The performance of the monitor was examined with continuous ozonated water. As a result, the monitor performed stably during about 2 months, so that both DO3 concentration and UV absorbance in the ozonated water could be accurately measured. Therefore, the authors have proposed the new aquatic control system with this monitor for ozonation.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 410
Author(s):  
Dan Liu ◽  
Xiaoming Liu ◽  
Pengyun Li ◽  
Xiaoqing Tang ◽  
Masaru Kojima ◽  
...  

In recent years, micromanipulators have provided the ability to interact with micro-objects in industrial and biomedical fields. However, traditional manipulators still encounter challenges in gaining the force feedback at the micro-scale. In this paper, we present a micronewton force-controlled two-finger microhand with a soft magnetic end-effector for stable grasping. In this system, a homemade electromagnet was used as the driving device to execute micro-objects manipulation. There were two soft end-effectors with diameters of 300 μm. One was a fixed end-effector that was only made of hydrogel, and the other one was a magnetic end-effector that contained a uniform mixture of polydimethylsiloxane (PDMS) and paramagnetic particles. The magnetic force on the soft magnetic end-effector was calibrated using an atomic force microscopy (AFM) probe. The performance tests demonstrated that the magnetically driven soft microhand had a grasping range of 0–260 μm, which allowed a clamping force with a resolution of 0.48 μN. The stable grasping capability of the magnetically driven soft microhand was validated by grasping different sized microbeads, transport under different velocities, and assembly of microbeads. The proposed system enables force-controlled manipulation, and we believe it has great potential in biological and industrial micromanipulation.


Sign in / Sign up

Export Citation Format

Share Document