scholarly journals Assessing Nitrogen Availability in Biobased Fertilizers: Effect of Vegetation on Mineralization Patterns

Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 870
Author(s):  
Hongzhen Luo ◽  
Ana A. Robles-Aguilar ◽  
Ivona Sigurnjak ◽  
Evi Michels ◽  
Erik Meers

Biobased nitrogen (N) fertilizers derived from animal manure can substitute synthetic mineral N fertilizer and contribute to more sustainable agriculture. Practitioners need to obtain a reliable estimation of the biobased fertilizers’ N value. This study compared the estimates for pig slurry (PS) and liquid fraction of digestate (LFD) using laboratory incubation and plant-growing experiments. A no-N treatment was used as control and calcium ammonium nitrate (CAN) as synthetic mineral fertilizer. After 100 days of incubation, the addition of PS and LFD resulted in a net N mineralization rate of 10.6 ± 0.3% and 20.6 ± 0.4% of the total applied N, respectively. The addition of CAN showed no significant net mineralization or immobilization (net N release 96 ± 6%). In the pot experiment under vegetation, all fertilized treatments caused N immobilization with a negative net N mineralization rate of −51 ± 11%, −9 ± 4%, and −27 ± 10% of the total applied N in CAN, PS, and LFD treatments, respectively. Compared to the pot experiment, the laboratory incubation without vegetation may have overestimated the N value of biobased fertilizers. Vegetation resulted in a lower estimation of available N from fertilizers, probably due to intensified competition with soil microbes or increased N loss via denitrification.

1992 ◽  
Vol 22 (12) ◽  
pp. 1895-1900 ◽  
Author(s):  
Richard D. Boone

Nitrogen (N) mineralization potential and net N mineralization insitu were measured monthly over 7 months for the forest floor horizons (Oi, Oe, Oa) and mineral soil (0–15 cm) of a pine stand and the mineral soil (0–15 cm) of a maple stand in Massachusetts, United States. In all cases, N mineralization potential per unit organic matter (anaerobic laboratory incubation) varied significantly by sampling month but was unrelated to the seasonal pattern for net N mineralization (buried-bag method). The organic horizons in the pine stand exhibited the most variable N mineralization potential, with the Oe horizon having more than a fourfold seasonal range. For the pine stand the Oe horizon also had the highest N mineralization potential (per unit organic matter) and the highest net N mineralization insitu (per unit area). In general, temporal and depth-wise variability should be considered when sites are assessed with respect to the pool of mineralizable N.


1992 ◽  
Vol 22 (5) ◽  
pp. 707-712 ◽  
Author(s):  
Xiwei Yin

Published data were analyzed to examine whether nitrogen (N) availability varies along macroclimatic gradients in North America. Extractable N produced during 8-week aerobic laboratory incubation was used as an index of potential net N mineralization. Mean extractable N during the growing season in the forest floor plus top mineral soil was used as an index of the available N pool. Using multiple regression, potential net N mineralization was shown to increase with available N and with litter-fall N (R2 = 0.722). Available N increased with increasing total soil N and with decreasing mean January and July air temperatures (R2 = 0.770). These relationships appeared to hold also for deciduous and coniferous forests separately across regions. Results suggest that net N mineralization output under uniform temperature and moisture conditions can be generally expressed by variations of N input (litter fall) and the available soil N pool, and that the available soil N pool is predictable along a temperature gradient at a regional scale.


1993 ◽  
Vol 73 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Régis R. Simard ◽  
Adrien N'dayegamiye

An understanding of the mineralization factors in contrasting cultivated soils is necessary for accurate predictions of plant-available N. The objective of this work was to determine the N-mineralization potential and mathematical models that can properly describe the dynamics of the mineralization process in 20 meadow soils from Quebec. The mineralization was monitored over 55.4 wk in a laboratory incubation at 20 °C with intermittent leaching. The cumulative mineralization curves in most soils were characterized by definite lags or a sigmoidal pattern and near-linear release with time after 20 wk. The data were best described by the Gompertz equation; first-order models were inadequate. The total amount of mineralizable N and the potential mineralization rate were very closely correlated with the total amounts of C or N (r > 0.73; P < 0.01). The clay content was also correlated with these mineralization parameters and significantly improved the prediction of the cumulative and potential N-mineralization rate estimated from the total N or C content of soils. The relationships with other soil characteristics such as soil pH and available nutrient contents were weak but significant. The results of this study suggest that textural classes be added in the correction for organic matter content to improve the precision in N-fertilizer recommendation and in soil-quality classifications based on potential mineralization rate. Key words: Soil quality, potentially mineralizable N, Gompertz equation, soil organic matter, soil texture, C, N


2013 ◽  
Vol 1 ◽  
pp. 114-124
Author(s):  
Tej Narayan Mandal

Seasonal dynamics of available nitrogen and N-mineralization in relation to fine root biomass was studied in five landslide damaged (1 to 58 years old) sites in the moist tropical sal (Shorea robusta) forest ecosystem of Nepal Himalaya. Comparisons were made with an undisturbed mature sal forest site located in the same region. Concentrations of soil available-N (NH4+ and NO3-) increased with the age of site till 40-year old sites and then declined. However, the proportion of NH4+ in total available N increased distinctly with increase in the age of sites. The NH4+: NO3- ratio increased considerably from 1.15 in 1-year site to 2.4 in mature sal forest. On the other hand, the net N-mineralization rate increased consistently until 58 years of age but the proportion of nitrification rate relative to ammonification rate distinctly decreased beyond 40 years indicating the dominance of ammonification over nitrification in the older sites. Fine root biomass and N- mineralization rate both increased but available-N decreased during rainy season. On the other hand fine root biomass and N-mineralization rate both decreased and available N increased during summer season. During the summer season, fine root biomass decreased by 57 - 68% indicating a rapid turnover. High turnover of fine root at the younger sites (1 to 15 yrs old) add more organic matter for the developing vegetation. Fine root biomass was positively correlated with the concentration of available-N and N-mineralization rate. It is concluded that fine root development was facilitated by higher amounts of available-N. DOI: http://dx.doi.org/10.3126/njbs.v1i0.7478 Nepalese Journal of Biosciences 1: 114-124 (2011)


2000 ◽  
Vol 135 (2) ◽  
pp. 151-159 ◽  
Author(s):  
INGRID K. THOMSEN ◽  
JØRGEN E. OLESEN

Three animal manures cross-labelled with 15N in either the urine, faeces or straw fractions were prepared. After a storage period of 86 days when the manures were exposed to either composting or to anaerobic storage, portions of the manures were incubated in six differently textured soils with clay contents ranging from 11 to 45%. Evolved CO2-C was determined during a 266 day incubation and inorganic N and 15N in soil were measured at the termination of the incubation. The mineralization of C was analysed using first-order kinetics, and two C pools with fast (P1) and slow (P2) turnover rates were estimated. The total conversion of added C (Ps) was estimated as Ps=P1+P2.The cumulated CO2 production was considerably higher from soils incubated with anaerobically stored manure compared with soils amended with composted manure. CO2 production levelled off after c. 60 days in the three sandier soils whereas CO2 continued to be produced throughout the incubation from the three soils with the highest clay content. More C was assigned to the easily decomposable P1 pool in the sandiest soils whereas the more recalcitrant P2 pool was larger in the soils with higher clay content. Because of the different relationships between soil texture and C pools, Ps ended up being similar for five of the six soils. When taking C losses during the preceding storage into account, the accumulated C losses during storage and after incubation in soil accounted for 60 and 54% of C initially present in the composted and anaerobically stored manure, respectively.Net N mineralization which averaged 16% of applied organic N took place in all soils amended with composted manure. Soils with anaerobically stored manure showed net immobilization after the 266 days of incubation. The amount of N immobilized accounted for up to 30% of the inorganic N applied with the manure. As anaerobically stored manure generally loses less inorganic N during storage, it may contain more inorganic N than composted manure at the time of field application. Because of the immobilization that takes place after application of anaerobically stored manure to soil, the immediate levels of plant available N in soil may not be as different from soil supplied with composted manure as could be expected from the inorganic N content in the two types of manure. However, when considering the manure as a N resource, anaerobic storage is superior to composting.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yükun Luo ◽  
Changhui Wang ◽  
Yan Shen ◽  
Wei Sun ◽  
Kuanhu Dong

Abstract As the largest portion of the terrestrial ecosystems, the arid and semi-arid grassland ecosystem is relatively sensitive and vulnerable to nitrogen (N) deposition. Mowing, the main management in Inner Mongolia grassland also has deep direct and indirect effect on N transformation by removing the nutrient from soils. However, the interaction effect of N addition and mowing on N transformation is still unclear, especially in semi-arid grassland. Here, we conducted a field-manipulated experiment to assess N addition (10 g N m−2 y−1) and mowing (in the middle of August) effects on soil net N mineralization rate across 4 growing seasons (2006–2009) in a semi-arid grassland in Inner Mongolia of northern China. We found that N addition with or without mowing led to significant effect on soil ammonification rate and net N mineralization rate, but had no significant effect on nitrification rates. Furthermore, mowing had no significant effect on soil net N mineralization, ammonification and nitrification rates. N addition and Mowing decreased microbial respiration and metabolic quotient, whereas the interaction of N addition and mowing had no significant effect on microbial respiration and metabolic quotient. Our results indicated that the effects of mowing and N addition did not interactively weaken soil net N mineralization rates in a semi-arid grassland of Northern China. Therefore, the anthropic management (i.e. mowing for hay once a year) with N addition may be a sustainable approach for restoration and reconstruction of vegetation in the abandoned grassland  of Northern China.


1996 ◽  
Vol 76 (2) ◽  
pp. 117-123 ◽  
Author(s):  
K. Broersma ◽  
N. G. Juma ◽  
J. A. Robertson

Proper management of crops on Gray Luvisols requires knowledge of net soil N mineralization during the growing season. Soil samples from a long-term field experiment at Beaverlodge, Alberta, were used to determine the kinetics of net N mineralization in soil samples from different crop rotations. The cropping systems established in 1968 consisted of (i) continuous barley (Hordeum vulgare L.) (CB); (ii) barley–forage (BF) [bromegrass (Bromus inermis Leyss.) and red clover (Trifolium pratense L.)]; (iii) continuous bromegrass (CG); and (iv) continuous legume (red clover) (CL.). The BF rotation was generally alternated every 3 yr, and each phase of the rotation (BF and BF) was present in every year. Soil samples from each cropping system were sampled to a depth of 15 cm in 1984. Net N mineralized during a 20-wk laboratory incubation at 30 °C and optimum moisture ranged from 32 to 207 mg kg−1 soil and followed the trend BF < CB = CG = BF < CL. The potentially mineralizable N (N0) ranged from 29 to 364 mg kg−1 soil; the mineralization rate constant (k) ranged from 0.04 to 0.26 wk−1; and the ratio of N0 to total N (active fraction) ranged from 1.1 to 11.4%. The net N mineralization rate of CL soil was 10-fold greater than that of the other cropping systems at the end of 20 wk of incubation. This suggests that the CL cropping system provides more N than other cropping systems during the growing season. Results support the observation that forages improve the N-supplying power of Gray Luvisols. Key words: Gray Luvisol, Typic Cryoboralf, N mineralization potential, cropping rotations, active N fraction


2006 ◽  
Vol 86 (3) ◽  
pp. 483-491 ◽  
Author(s):  
Y K Soon ◽  
S A Brandt ◽  
S S Malhi

Environment and management effects on the N supply to crops are not well understood. We assessed the influence of tillage system (conventional tillage or no-till), N fertilizer (0 or 60 kg N ha-1) and year on N sources and supply of a Dark Brown Chernozem loam soil, and N utilization by spring wheat (Triticum aestivum L.) in 2 yr. The main N source was mineralized N; only 14–23% of wheat N was derived from fertilizer, and non-exchangeable ammonium made no measurable contribution. Soil NO3 and exchangeable NH4 content at sowing and net N mineralization during the growing season (Nmin) were influenced more by year than by N addition and tillage. Nmin was 90–100 kg N ha-1 in 1999, a moist growing season but only 21–39 kg N ha-1 in 2000, a drier year. In both years, soil inorganic N to 60 cm at sowing averaged about 60 kg N ha-1 of which half was N mineralized since the previous harvest. Year accounted for 65–81% of the variation in N uptake. Fertilization increased N uptake and wheat yields, especially in 2000, but fertilization and tillage had no effect on post-heading N uptake and N translocation. Nitrogen use efficiency (NUE) and N recovery were lower with N applied and not affected by tillage. Our study indicated that available N was affected more by environment than management. In dry conditions, when Nmin is low, N application may be more effective in increasing yield and N uptake than in wet years, an observation that may merit further attention. Key words: Available N, N mineralization, N recovery, N use efficiency, non-exchangeable ammonium, tillage


Sign in / Sign up

Export Citation Format

Share Document