C and N mineralization of composted and anaerobically stored ruminant manure in differently textured soils

2000 ◽  
Vol 135 (2) ◽  
pp. 151-159 ◽  
Author(s):  
INGRID K. THOMSEN ◽  
JØRGEN E. OLESEN

Three animal manures cross-labelled with 15N in either the urine, faeces or straw fractions were prepared. After a storage period of 86 days when the manures were exposed to either composting or to anaerobic storage, portions of the manures were incubated in six differently textured soils with clay contents ranging from 11 to 45%. Evolved CO2-C was determined during a 266 day incubation and inorganic N and 15N in soil were measured at the termination of the incubation. The mineralization of C was analysed using first-order kinetics, and two C pools with fast (P1) and slow (P2) turnover rates were estimated. The total conversion of added C (Ps) was estimated as Ps=P1+P2.The cumulated CO2 production was considerably higher from soils incubated with anaerobically stored manure compared with soils amended with composted manure. CO2 production levelled off after c. 60 days in the three sandier soils whereas CO2 continued to be produced throughout the incubation from the three soils with the highest clay content. More C was assigned to the easily decomposable P1 pool in the sandiest soils whereas the more recalcitrant P2 pool was larger in the soils with higher clay content. Because of the different relationships between soil texture and C pools, Ps ended up being similar for five of the six soils. When taking C losses during the preceding storage into account, the accumulated C losses during storage and after incubation in soil accounted for 60 and 54% of C initially present in the composted and anaerobically stored manure, respectively.Net N mineralization which averaged 16% of applied organic N took place in all soils amended with composted manure. Soils with anaerobically stored manure showed net immobilization after the 266 days of incubation. The amount of N immobilized accounted for up to 30% of the inorganic N applied with the manure. As anaerobically stored manure generally loses less inorganic N during storage, it may contain more inorganic N than composted manure at the time of field application. Because of the immobilization that takes place after application of anaerobically stored manure to soil, the immediate levels of plant available N in soil may not be as different from soil supplied with composted manure as could be expected from the inorganic N content in the two types of manure. However, when considering the manure as a N resource, anaerobic storage is superior to composting.

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 320
Author(s):  
Qianyao Si ◽  
Mary G. Lusk ◽  
Patrick W. Inglett

Stormwater infiltration basins (SIBs) are vegetated depressions that collect stormwater and allow it to infiltrate to underlying groundwater. Their pollutant removal efficiency is affected by the properties of the soils in which they are constructed. We assessed the soil nitrogen (N) cycle processes that produce and remove inorganic N in two urban SIBs, with the goal of further understanding the mechanisms that control N removal efficiency. We measured net N mineralization, nitrification, and potential denitrification in wet and dry seasons along a sedimentation gradient in two SIBs in the subtropical Tampa, Florida urban area. Net N mineralization was higher in the wet season than in the dry season; however, nitrification was higher in the dry season, providing a pool of highly mobile nitrate that would be susceptible to leaching during periodic dry season storms or with the onset of the following wet season. Denitrification decreased along the sediment gradient from the runoff inlet zone (up to 5.2 μg N/g h) to the outermost zone (up to 3.5 μg N/g h), providing significant spatial variation in inorganic N removal for the SIBs. Sediment accumulating around the inflow areas likely provided a carbon source, as well as maintained stable anaerobic conditions, which would enhance N removal.


2014 ◽  
Vol 11 (6) ◽  
pp. 9667-9695 ◽  
Author(s):  
C. M. White ◽  
A. R. Kemanian ◽  
J. P. Kaye

Abstract. Carbon (C) saturation theory suggests that soils have a~limited capacity to stabilize organic C and that this capacity may be regulated by intrinsic soil properties such as clay content and mineralogy. While C saturation theory has advanced our ability to predict soil C stabilization, we only have a weak understanding of how C saturation affects N cycling. In biogeochemical models, C and N cycling are tightly coupled, with C decomposition and respiration driving N mineralization. Thus, changing model structures from non-saturation to C saturation dynamics can change simulated N dynamics. Carbon saturation models proposed in the literature calculate a theoretical maximum C storage capacity of saturating pools based on intrinsic soil properties, such as clay content. The extent to which current C stocks fill the storage capacity of the pool is termed the C saturation ratio, and this ratio is used to regulate either the efficiency or the rate of C transfer from donor to receiving pools. In this study, we evaluated how the method of implementing C saturation and the number of pools in a model affected net N mineralization from decomposing plant residues. In models that use the C saturation ratio to regulate transfer efficiency, C saturation affected N mineralization, while in those in which the C saturation ratio regulates transfer rates, N mineralization was independent of C saturation. When C saturation ratio regulates transfer efficiency, as the saturation ratio increases, the threshold C : N ratio at which positive net N mineralization occurs also increases because more of the C in the residue is respired. In a single-pool model where C saturation ratio regulated the transfer efficiency, predictions of N mineralization from residue inputs were unrealistically high, missing the cycle of N immobilization and mineralization typically seen after the addition of high C : N inputs to soils. A more realistic simulation of N mineralization was achieved simply by adding a second pool to the model to represent short-term storage and turnover of C and N in microbial biomass. These findings increase our understanding of how to couple C saturation and N mineralization models, while offering new hypotheses about the relationship between C saturation and N mineralization that can be tested empirically.


1992 ◽  
Vol 22 (5) ◽  
pp. 707-712 ◽  
Author(s):  
Xiwei Yin

Published data were analyzed to examine whether nitrogen (N) availability varies along macroclimatic gradients in North America. Extractable N produced during 8-week aerobic laboratory incubation was used as an index of potential net N mineralization. Mean extractable N during the growing season in the forest floor plus top mineral soil was used as an index of the available N pool. Using multiple regression, potential net N mineralization was shown to increase with available N and with litter-fall N (R2 = 0.722). Available N increased with increasing total soil N and with decreasing mean January and July air temperatures (R2 = 0.770). These relationships appeared to hold also for deciduous and coniferous forests separately across regions. Results suggest that net N mineralization output under uniform temperature and moisture conditions can be generally expressed by variations of N input (litter fall) and the available soil N pool, and that the available soil N pool is predictable along a temperature gradient at a regional scale.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 444 ◽  
Author(s):  
Chen-Chi Tsai ◽  
Yu-Fang Chang

Adding biochar to excessive compost amendments may affect compost mineralization rate and nitrogen (N) availability. The objective of this 371-day incubation study was to evaluate the effects of four proportions of woody biochar (0%, 0.5%, 1.0%, and 2.0%) from lead tree (Leucaena leucocephala (Lam.) de. Wit) biochar produced at 750 °C through dynamic mineral N and N mineralization rates in three rural soils (one Oxisol and two Inceptisols). In each treatment, 5% poultry–livestock manure compost was added to serve as an excessive application. The results indicated that the biochar decreased available total inorganic nitrogen (TIN) (NO3−-N+NH4+-N) by on average 6%, 9% and 19% for 0.5%, 1.0% and 2.0% treatments, respectively. The soil type strongly influenced the impact of the biochar addition on the soil nitrogen mineralization potential, especially the soil pH and clay content. This study showed that the co-application of biochar and excessive compost benefited the agricultural soils by improving NO3−-N retention in agroecosystems. The application of biochar to these soils to combine it with excessive compost appeared to be an effective method of utilizing these soil amendments, as it diminished the net N mineralization potential and reduced the nitrate loss of the excessive added compost.


2005 ◽  
Vol 85 (5) ◽  
pp. 579-587 ◽  
Author(s):  
Y. K. Soon ◽  
S. S. Malhi

The influence o f landscape position on the dynamics of N in the soil-plant system has not been adequately studied. Our aim with this study on a predominantly Black Chernozem soil was to evaluate the effect of slope position (upper vs. lower) and N fertilizer application (none vs. 60 kg N ha-1) on soil and wheat (Triticum aestivum L.) N through the growing season. Landscape position had a dominant effect on soil NO3− and soluble organic N (SON) concentrations, especially in the surface 15 cm. These pools of soil N and net N mineralization were greater at the lower than at the upper slope position. The landscape effect is attributed to higher organic matter content (as measured by organic C) and water availability in lower compared with upper slope positions. Nitrogen application had no measurable effect on soil NO3− and SON concentrations. Exchangeable and non-exchangeable NH4+ were little affected by slope position or N fertilization. Nitrogen application increased wheat N uptake; however, its influence was less than that of slope position, especially on N accumulation in wheat heads during grain-filling. Although N application increased wheat yields, landscape position exerted the greater influence: grain yield was less on upper than lower slope positions due to earlier onset of crop maturity. During grain filling, net N mineralization was suppressed at the upper slope position and by N application. The increase in crop yield and N uptake due to N application was not significantly different between slope positions. This study demonstrated that landscape position had a greater influence on N dynamics and availability than the application of typical amounts of fertilizer N and that the two effects were mostly independent of each other. Key words: Available N, landscape position, N uptake, net N mineralization, soluble organic N


2015 ◽  
Vol 45 (7) ◽  
pp. 958-962 ◽  
Author(s):  
Frank S. Gilliam ◽  
Julia E. Galloway ◽  
Jacob S. Sarmiento

This study examined the effects of temperature on soil nitrogen (N) dynamics and variation with slope aspect (northeast (NE) versus southwest (SW)) at two forested sites in West Virginia — Beech Fork Lake (BFL) and Fernow Experimental Forest (FEF) — with similar soil and overstory characteristics but with different latitudes and elevations. Previous work on mineral soil from both sites had shown sharp differences in microbial communities between SW slopes and NE slopes. Mineral soil was sampled from three and eight plots per aspect at FEF and BFL, respectively. Inorganic N was extracted from samples, which were then divided into polyethylene bags for 7-day incubations at 4 °C, 15 °C, 25 °C, and 35 °C. Following incubation, soils were extracted and analyzed for inorganic N. Net N mineralization varied significantly between aspects and temperatures but did not vary between sites; net nitrification varied significantly between aspects, temperatures, and sites. Net N mineralization increased with incubation temperature at all aspects and sites. Net nitrification rates increased with incubation temperature for BFL soils; however, maximum net nitrification rates occurred at 20–25 °C for FEF soils. Net nitrification was essentially undetectable for SW soils at either site. Results underline the complexities of the N cycle in temperate forest ecosystems, representing challenges in predicting alterations in soil N dynamics under conditions of global climate change.


2021 ◽  
Author(s):  
Zhijie Li ◽  
Zimin Li ◽  
Rüdiger Reichel ◽  
Kaijun Yang ◽  
Li Zhang ◽  
...  

Abstract Background Snow cover change has a great potential to impact soil nitrogen (N) pools and enzyme activities in boreal forests. Yet, the nature of this biochemical processes within soil aggregates is still limited. We conducted a snow manipulation experiment to investigate the effects of snow absence on N pools and enzyme activities within soil aggregates in a subalpine spruce forest on the eastern Tibetan Plateau of China. Results Snow absence increased extractable inorganic N pools (ammonium and nitrate) and enzyme activities, accompanying with the improvement of N mineralization rate. Regardless of snow manipulations, both soil extractable inorganic N and net N mineralization was higher in macroaggregates than that in the other two aggregates. In contrast, microaggregates had higher urease and nitrite reductase activities compared to macroaggregates and large macroaggregates. Compared with small macroaggregates and large macroaggregates, N pools and enzymes within microaggregates is more sensitive to snow absence. Conclusions Our results indicated that the impacts of snow cover change on soil N dynamic depend on aggregate sizes and winter conditions (e.g., snow cover and temperature). Such findings have important implication for soil N cycling in snow-covered subalpine forests experiencing pronounced winter climate change.


1999 ◽  
Vol 29 (11) ◽  
pp. 1793-1804 ◽  
Author(s):  
Kevin J Devito ◽  
Cherie J Westbrook ◽  
Sherry L Schiff

Net mineralization and nitrification in surface forest soils were measured in upland forest stands and valley peatlands using in situ soil incubations at two headwater catchments of Harp Lake, Ontario from July 1995 to October 1996. No difference in either net N mineralization or nitrification was observed between the two adjacent catchments despite differences in catchment N export. Annual rates of net N mineralization in surface 10 cm were higher in forest soils of the deciduous (11.5 ± 3.1 g/m2; mean ± SE) and conifer-mixed (conifer-hardwoods) (13.9 ± 2.3 g/m2) stands than in peatland soils (1.6 ± 0.6 g/m2). Mean annual nitrification rates were higher in deciduous soils (6.6 ± 0.7 g N/m2) than in mixed stands (1.9 ± 0.6 g N/m2) and peatland soils (0.1 ± 0.2 g N/m2). Annual net N mineralization and nitrification were correlated with variations in soil C and N content and moisture associated with different forest stands. Frequent winter incubations indicate that net mineralization and nitrification under snow cover in upland surface soils can contribute as much as 49 and 23% of the annual net production, respectively. The importance of forest vegetation patterns, winter N transformations, and dissolved organic N pools to total N and NO3- cycling and leaching in these catchments is discussed.


2011 ◽  
Vol 35 (4) ◽  
pp. 1141-1149 ◽  
Author(s):  
Sérgio Ricardo Silva ◽  
Ivo Ribeiro da Silva ◽  
Nairam Félix de Barros ◽  
Eduardo de Sá Mendonça

The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.


2004 ◽  
Vol 35 (4-5) ◽  
pp. 347-357 ◽  
Author(s):  
K. Rankinen ◽  
K. Granlund ◽  
I. Bärlund

Concentrations of inorganic nitrogen (N) in non-polluted and undisturbed northern rivers are often lower during summer than during the dormant season. The great difference between summer and winter N concentrations probably reflects higher soil water N contents in the dormant season compared with the growing season, when inorganic N is usually retained effectively. Microbial activity in soil is observed even in sub-zero temperatures and it is generally assumed that in the northern latitudes some N mineralization occurs during winter. The dynamic, semi-distributed INCA (Integrated Nitrogen in Catchments) model was applied to the Simojoki river basin in the boreal zone in northern Finland. With this model process rates and loads of N can be simulated in different land use modes. The INCA model was not able to simulate the high inorganic N concentrations in the river water in winter unless N processes in sub-zero temperatures were included. The aim of this study was to compare the simulated N mineralization in two different land use modes: boreal forests on mineral soil and agricultural fields. Net N mineralization occurring during the season when soil is mainly frozen (November–April) accounted for 43% of the annual N mineralization. This work indicates the importance of over-winter N processes in northern areas, which should be taken into account when modelling nutrient leaching.


Sign in / Sign up

Export Citation Format

Share Document